8 resultados para BCR

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This 9p21 locus, encode for important proteins involved in cell cycle regulation and apoptosis containing the p16/CDKN2A (cyclin-dependent kinase inhibitor 2a) tumor suppressor gene and two other related genes, p14/ARF and p15/CDKN2B. This locus, is a major target of inactivation in the pathogenesis of a number of human tumors, both solid and haematologic, and is a frequent site of loss or deletion also in acute lymphoblastic leukemia (ALL) ranging from 18% to 45% 1. In order to explore, at high resolution, the frequency and size of alterations affecting this locus in adult BCR-ABL1-positive ALL and to investigate their prognostic value, 112 patients (101 de novo and 11 relapse cases) were analyzed by genome-wide single nucleotide polymorphisms arrays and gene candidate deep exon sequencing. Paired diagnosis-relapse samples were further available and analyzed for 19 (19%) cases. CDKN2A/ARF and CDKN2B genomic alterations were identified in 29% and 25% of newly diagnosed patients, respectively. Deletions were monoallelic in 72% of cases and in 43% the minimal overlapping region of the lost area spanned only the CDKN2A/2B gene locus. The analysis at the time of relapse showed an almost significant increase in the detection rate of CDKN2A/ARF loss (47%) compared to diagnosis (p = 0.06). Point mutations within the 9p21 locus were found at very low level with only a non-synonymous substition in the exon 2 of CDKN2A. Finally, correlation with clinical outcome showed that deletions of CDKN2A/B are significantly associated with poor outcome in terms of overall survival (p = 0.0206), disease free-survival (p = 0.0010) and cumulative incidence of relapse (p = 0.0014). The inactivation of 9p21 locus by genomic deletions is a frequent event in BCR-ABL1-positive ALL. Deletions are frequently acquired at the leukemia progression and work as a poor prognostic marker.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In chronic myeloid leukemia and Philadelphia-positive acute lymphoblastic leukemia patients resistant to tyrosine kinase inhibitors (TKIs), BCR-ABL kinase domain mutation status is an essential component of the therapeutic decision algorithm. The recent development of Ultra-Deep Sequencing approach (UDS) has opened the way to a more accurate characterization of the mutant clones surviving TKIs conjugating assay sensitivity and throughput. We decided to set-up and validated an UDS-based for BCR-ABL KD mutation screening in order to i) resolve qualitatively and quantitatively the complexity and the clonal structure of mutated populations surviving TKIs, ii) study the dynamic of expansion of mutated clones in relation to TKIs therapy, iii) assess whether UDS may allow more sensitive detection of emerging clones, harboring critical 2GTKIs-resistant mutations predicting for an impending relapse, earlier than SS. UDS was performed on a Roche GS Junior instrument, according to an amplicon sequencing design and protocol set up and validated in the framework of the IRON-II (Interlaboratory Robustness of Next-Generation Sequencing) International consortium.Samples from CML and Ph+ ALL patients who had developed resistance to one or multiple TKIs and collected at regular time-points during treatment were selected for this study. Our results indicate the technical feasibility, accuracy and robustness of our UDS-based BCR-ABL KD mutation screening approach. UDS was found to provide a more accurate picture of BCR-ABL KD mutation status, both in terms of presence/absence of mutations and in terms of clonal complexity and showed that BCR-ABL KD mutations detected by SS are only the “tip of iceberg”. In addition UDS may reliably pick 2GTKIs-resistant mutations earlier than SS in a significantly greater proportion of patients.The enhanced sensitivity as well as the possibility to identify low level mutations point the UDS-based approach as an ideal alternative to conventional sequencing for BCR-ABL KD mutation screening in TKIs-resistant Ph+ leukemia patients

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Ph chromosome is the most frequent cytogenetic aberration associated with adult ALL and it represents the single most significant adverse prognostic marker. Despite imatinib has led to significant improvements in the treatment of patients with Ph+ ALL, in the majority of cases resistance developed quickly and disease progressed. Some mechanisms of resistance have been widely described but the full knowledge of contributing factors, driving both the disease and resistance, remains to be defined. The observation of rapid development of lymphoblastic leukemia in mice expressing altered Ikaros (Ik) isoforms represented the background of this study. Ikaros is a zinc finger transcription factor required for normal hemopoietic differentiation and proliferation, particularly in the lymphoid lineages. By means of alternative splicing, Ikaros encodes several proteins that differ in their abilities to bind to a consensus DNA-binding site. Shorter, DNA nonbinding isoforms exert a dominant negative effect, inhibiting the ability of longer heterodimer partners to bind DNA. The differential expression pattern of Ik isoforms in Ph+ ALL patients was analyzed in order to determine if molecular abnormalities involving the Ik gene could associate with resistance to imatinib and dasatinib. Bone marrow and peripheral blood samples from 46 adult patients (median age 55 yrs, 18-76) with Ph+ ALL at diagnosis and during treatment with imatinib (16 pts) or dasatinib (30 pts) were collected. We set up a fast, high-throughput method based on capillary electrophoresis technology to detect and quantify splice variants. 41% Ph+ ALL patients expressed high levels of the non DNA-binding dominant negative Ik6 isoform lacking critical N-terminal zinc-fingers which display abnormal subcellular compartmentalization pattern. Nuclear extracts from patients expressed Ik6 failed to bind DNA in mobility shift assay using a DNA probe containing an Ikaros-specific DNA binding sequence. In 59% Ph+ ALL patients there was the coexistence in the same PCR sample and at the same time of many splice variants corresponded to Ik1, Ik2, Ik4, Ik4A, Ik5A, Ik6, Ik6 and Ik8 isoforms. In these patients aberrant full-length Ikaros isoforms in Ph+ ALL characterized by a 60-bp insertion immediately downstream of exon 3 and a recurring 30-bp in-frame deletion at the end of exon 7 involving most frequently the Ik2, Ik4 isoforms were also identified. Both the insertion and deletion were due to the selection of alternative splice donor and acceptor sites. The molecular monitoring of minimal residual disease showed for the first time in vivo that the Ik6 expression strongly correlated with the BCR-ABL transcript levels suggesting that this alteration could depend on the Bcr-Abl activity. Patient-derived leukaemia cells expressed dominant-negative Ik6 at diagnosis and at the time of relapse, but never during remission. In order to mechanistically demonstrated whether in vitro the overexpression of Ik6 impairs the response to tyrosine kinase inhibitors (TKIs) and contributes to resistance, an imatinib-sensitive Ik6-negative Ph+ ALL cell line (SUP-B15) was transfected with the complete Ik6 DNA coding sequence. The expression of Ik6 strongly increased proliferation and inhibited apoptosis in TKI sensitive cells establishing a previously unknown link between specific molecular defects that involve the Ikaros gene and the resistance to TKIs in Ph+ ALL patients. Amplification and genomic sequence analysis of the exon splice junction regions showed the presence of 2 single nucleotide polymorphisms (SNPs): rs10251980 [A/G] in the exon2/3 splice junction and of rs10262731 [A/G] in the exon 7/8 splice junction in 50% and 36% of patients, respectively. A variant of the rs11329346 [-/C], in 16% of patients was also found. Other two different single nucleotide substitutions not recognized as SNP were observed. Some mutations were predicted by computational analyses (RESCUE approach) to alter cis-splicing elements. In conclusion, these findings demonstrated that the post-transcriptional regulation of alternative splicing of Ikaros gene is defective in the majority of Ph+ ALL patients treated with TKIs. The overexpression of Ik6 blocking B-cell differentiation could contribute to resistance opening a time frame, during which leukaemia cells acquire secondary transforming events that confer definitive resistance to imatinib and dasatinib.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Nilotinib is a potent and selective BCR-ABL inhibitor. The phase 3 ENESTnd trial demonstrated superior efficacy nilotinib vs imatinib, with higher and faster molecular responses. After 24 months, the rates of progression to accelerated-blastic phase (ABP) were 0.7% and 1.1% with nilotinib 300mg and 400mg BID, respectively, significantly lower compared to imatinib (4.2%). Nilotinib has been approved for the frontline treatment of Ph+ CML. With imatinib 400mg (IRIS trial), the rate of any event and of progression to ABP were higher during the first 3 years. Consequently, a confirmation of the durability of responses to nilotinib beyond 3 years is extremely important. Aims: To evaluate the response and the outcome of patients treated for 3 years with nilotinib 400mg BID as frontline therapy. Methods: A multicentre phase 2 trial was conducted by the GIMEMA CML WP (ClinicalTrials.gov.NCT00481052). Minimum 36-month follow-up data for all patients will be presented. Definitions: Major Molecular Response (MMR): BCR-ABL/ABL ratio <0,1%IS; Complete Molecular Response (CMR): undetectable transcript levels with ≥10,000 ABL transcripts; failures: according to the revised ELN recommendations; events: failures and treatment discontinuation for any reason. All the analysis has been made according to the intention-to-treat principle. Results: 73 patients enrolled: median age 51 years; 45% low, 41% intermediate and 14% high Sokal risk. The cumulative incidence of CCgR at 12 months was 100%. CCgR at each milestone: 78%, 96%, 96%, 95%, 92% at 3, 6, 12, 18 and 24 months, respectively. The overall estimated probability of MMR was 97%, while the rates of MMR at 3, 6, 12, 18 and 24 months were 52%, 66%, 85%, 81% and 82%, respectively. The overall estimated probability of CMR was 79%, while the rates of CMR at 12 and 24 months were 12% and 27%, respectively. No patient achieving a MMR progressed to AP. Only one patient progressed at 6 months to ABP and subsequently died (high Sokal risk, T315I mutation). Adverse events were mostly grade 1 or 2 and manageable with appropriate dose adaptations. During the first 12 months, the mean daily dose was 600-800mg in 74% of patients. The nilotinib last daily dose was as follows: 800mg in 46 (63%) patients, 600mg in 3 (4%) patients and 400mg in 18 (25%), 6 permanent discontinuations. Detail of discontinuation: 1 patient progressed to ABP; 3 patients had recurrent episodes of amylase and/or lipase increase (no pancreatitis); 1 patient had atrial fibrillation (unrelated to study drug) and 1 patient died after 32 months of mental deterioration and starvation (unrelated to study drug). Two patients are currently on imatinib second-line and 2 on dasatinib third-line. With a median follow-up of 39 months, the estimated probability of overall survival, progression-free survival and failure-free survival was 97%, the estimated probability of event-free survival was 91%. Conclusions: The rate of failures was very low during the first 3 years. Responses remain stable. The high rates of responses achieved during the first 12 months are being translated into optimal outcome for most of patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The post genomic era, set the challenge to develop drugs that target an ever-growing list of proteins associated with diseases. However, an increase in the number of drugs approved every year is nowadays still not observed. To overcome this gap, innovative approaches should be applied in drug discovery for target validation, and at the same time organic synthetic chemistry has to find new fruitful strategies to obtain biologically active small molecules not only as therapeutic agents, but also as diagnostic tools to identify possible cellular targets. In this context, in view of the multifactorial mechanistic nature of cancer, new chimeric molecules, which can be either antitumor lead candidates, or valuable chemical tools to study molecular pathways in cancer cells, were developed using a multitarget-directed drug design strategy. According to this approach, the desired hybrid compounds were obtained by combining in a single chemical entity SAHA analogues, targeting histone deacetylases (HDACs), with substituted stilbene or terphenyl derivatives able to block cell cycle, to induce apoptosis and cell differentiation and with Sorafenib derivative, a multikinase inhibitor. The new chimeric derivatives were characterized with respect to their cytotoxic activity and their effects on cell cycle progression on leukemia Bcr-Abl-expressing K562 cell lines, as well as their HDACs inhibition. Preliminary results confirmed that one of the hybrid compounds has the desired chimeric profile. A distinct project was developed in the laboratory of Dr Spring, regarding the synthesis of a diversity-oriented synthesis (DOS) library of macrocyclic peptidomimetics. From a biological point of view, this class of molecules is extremely interesting but underrepresented in drug discovery due to the poor synthetic accessibility. Therefore it represents a valid challenge for DOS to take on. A build/couple/pair (B/C/P) approach provided, in an efficient manner and in few steps, the structural diversity and complexity required for such compounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L’applicazione della citogenetica convenzionale e molecolare può identificare: Ph-negatività, traslocazioni t(9;22) varianti e alterazioni citogenetiche addizionali (ACA) al cromsoma Ph in pazienti con LMC alla diagnosi. Prima dell’introduzione della terapia con Imatinib, esse mostravano un impatto prognostico negativo o non chiaro. Nel nostro studio, 6 casi di LMC Ph- erano trattati con Imatinib. La FISH identificava 4 casi con riarrangiamento BCR/ABL sul der(9q), 1 sul der(22q) e 1 su entrambi i derivativi. Quattro pazienti (66,7%) raggiungevano la RCgC, 2 fallivano il trattamento e 1 sottoposto a TMO. A causa dello scarso numero di casi, non era possibile nessuna correlazione con la prognosi. Nell’ambito di studi prospettici multicentrici del GIMEMA-WP, abbiamo valutato: traslocazioni varianti e ACA. Dei 559 pazienti arruolati, 30(5%) mostravano traslocazioni varianti, 24 valutabili in FISH: 18(75%) mostravano meccanismo 1-step, 4(16,7%) meccanismo 2-step e 2(8,3%) meccanismo complesso. Abbiamo confermato che le varianti non influenzano la risposta e la sopravvivenza dei pazienti trattati con Imatinib. Dei 378 pazienti valutabili alla diagnosi con citogenetica convenzionale, 21(5,6%) mostravano ACA: 9(43%) avevano la perdita del cromosoma Y, 3(14%) trisomia 8, 2(10%) trisomia 19, 6(28%) altre singole anomalie e 1 cariotipo complesso. La presenza di ACA influenzava la risposta: le RCgC e RMolM erano significativamente più basse rispetto al gruppo senza ACA e le curve di sopravvivenza EFS e FFS non erano significativamente diverse. Le curve di PFS e OS erano sovrapponibili nei due gruppi, per il basso numero di eventi avversi oppure perché alcuni raggiungevano la risposta con TKI di seconda generazione. Le anomalie “major route” mostravano decorso clinico peggiore, ma non è stato possibile determinare l’impatto prognostico in relazione al tipo di alterazione. Pertanto, le ACAs alla diagnosi rivestono un ruolo negativo nella prognosi dei pazienti trattati con Imatinib, che quindi rappresentano una categoria più a rischio per la risposta.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The human p53 tumor suppressor, known as the “guardian of the genome”, is one of the most important molecules in human cancers. One mechanism for suppressing p53 uses its negative regulator, MDM2, which modulates p53 by binding directly to and decreasing p53 stability. In testing novel therapeutic approaches activating p53, we investigated the preclinical activity of the MDM2 antagonist, Nutlin-3a, in Philadelphia positive (Ph+) and negative (Ph-) leukemic cell line models, and primary B-Acute lymphoblastic leukemia (ALL) patient samples. In this study we demonstrated that treatment with Nutlin-3a induced grow arrest and apoptosis mediated by p53 pathway in ALL cells with wild-type p53, in time and dose-dependent manner. Consequently, MDM2 inhibitor caused an increase of pro-apoptotic proteins and key regulators of cell cycle arrest. The dose-dependent reduction in cell viability was confirmed in primary blast cells from Ph+ ALL patients with the T315I Bcr-Abl kinase domain mutation. In order to better elucidate the implications of p53 activation and to identify biomarkers of clinical activity, gene expression profiling analysis in sensitive cell lines was performed. A total of 621 genes were differentially expressed (p < 0.05). We found a strong down-regulation of GAS41 (growth-arrest specific 1 gene) and BMI1 (a polycomb ring-finger oncogene) (fold-change -1.35 and -1.11, respectively; p-value 0.02 and 0.03, respectively) after in vitro treatment as compared to control cells. Both genes are repressors of INK4/ARF and p21. Given the importance of BMI in the control of apoptosis, we investigated its pattern in treated and untreated cells, confirming a marked decrease after exposure to MDM2 inhibitor in ALL cells. Noteworthy, the BMI-1 levels remained constant in resistant cells. Therefore, BMI-1 may be used as a biomarker of response. Our findings provide a strong rational for further clinical investigation of Nutlin-3a in Ph+ and Ph-ALL.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the past years, genome biology had disclosed an ever-growing kind of biological targets that emerged as ideal points for therapeutic intervention. Nevertheless, the number of new chemical entities (NCEs) translated into effective therapies employed in the clinic, still not observed. Innovative strategies in drug discovery combined with different approaches to drug design should be searched for bridge this gap. In this context organic synthetic chemistry had to provide for effective strategies to achieve biologically active small molecules to consider not only as potentially drug candidates, but also as chemical tools to dissect biological systems. In this scenario, during my PhD, inspired by the Biology-oriented Synthesis approach, a small library of hybrid molecules endowed with privileged scaffolds, able to block cell cycle and to induce apoptosis and cell differentiation, merged with natural-like cores were synthesized. A synthetic platform which joined a Domino Knoevenagel-Diels Alder reaction with a Suzuki coupling was performed in order to reach the hybrid compounds. These molecules can represent either antitumor lead candidates, or valuable chemical tools to study molecular pathways in cancer cells. The biological profile expressed by some of these derivatives showed a well defined antiproliferative activity on leukemia Bcr-Abl expressing K562 cell lines. A parallel project regarded the rational design and synthesis of minimally structurally hERG blockers with the purpose of enhancing the SAR studies of a previously synthesized collection. A Target-Oriented Synthesis approach was applied. Combining conventional and microwave heating, the desired final compounds were achieved in good yields and reaction rates. The preliminary biological results of the compounds, showed a potent blocking activity. The obtained small set of hERG blockers, was able to gain more insight the minimal structural requirements for hERG liability, which is mandatory to investigate in order to reduce the risk of potential side effects of new drug candidates.