3 resultados para BALANCING PROBLEM
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Multi-phase electrical drives are potential candidates for the employment in innovative electric vehicle powertrains, in response to the request for high efficiency and reliability of this type of application. In addition to the multi-phase technology, in the last decades also, multilevel technology has been developed. These two technologies are somewhat complementary since both allow increasing the power rating of the system without increasing the current and voltage ratings of the single power switches of the inverter. In this thesis, some different topics concerning the inverter, the motor and the fault diagnosis of an electric vehicle powertrain are addressed. In particular, the attention is focused on multi-phase and multilevel technologies and their potential advantages with respect to traditional technologies. First of all, the mathematical models of two multi-phase machines, a five-phase induction machine and an asymmetrical six-phase permanent magnet synchronous machines are developed using the Vector Space Decomposition approach. Then, a new modulation technique for multi-phase multilevel T-type inverters, which solves the voltage balancing problem of the DC-link capacitors, ensuring flexible management of the capacitor voltages, is developed. The technique is based on the proper selection of the zero-sequence component of the modulating signals. Subsequently, a diagnostic technique for detecting the state of health of the rotor magnets in a six-phase permanent magnet synchronous machine is established. The technique is based on analysing the electromotive force induced in the stator windings by the rotor magnets. Furthermore, an innovative algorithm able to extend the linear modulation region for five-phase inverters, taking advantage of the multiple degrees of freedom available in multi-phase systems is presented. Finally, the mathematical model of an eighteen-phase squirrel cage induction motor is defined. This activity aims to develop a motor drive able to change the number of poles of the machine during the machine operation.
Resumo:
A fundamental gap in the current understanding of collapsed structures in the universe concerns the thermodynamical evolution of the ordinary, baryonic component. Unopposed radiative cooling of plasma would lead to the cooling catastrophe, a massive inflow of condensing gas toward the centre of galaxies, groups and clusters. The last generation of multiwavelength observations has radically changed our view on baryons, suggesting that the heating linked to the active galactic nucleus (AGN) may be the balancing counterpart of cooling. In this Thesis, I investigate the engine of the heating regulated by the central black hole. I argue that the mechanical feedback, based on massive subrelativistic outflows, is the key to solving the cooling flow problem, i.e. dramatically quenching the cooling rates for several billion years without destroying the cool-core structure. Using an upgraded version of the parallel 3D hydrodynamic code FLASH, I show that anisotropic AGN outflows can further reproduce fundamental observed features, such as buoyant bubbles, cocoon shocks, sonic ripples, metals dredge-up, and subsonic turbulence. The latter is an essential ingredient to drive nonlinear thermal instabilities, which cause cold gas condensation, a residual of the quenched cooling flow and, later, fuel for the AGN feedback engine. The self-regulated outflows are systematically tested on the scales of massive clusters, groups and isolated elliptical galaxies: in lighter less bound objects the feedback needs to be gentler and less efficient, in order to avoid drastic overheating. In this Thesis, I describe in depth the complex hydrodynamics, involving the coupling of the feedback energy to that of the surrounding hot medium. Finally, I present the merits and flaws of all the proposed models, with a critical eye toward observational concordance.
Resumo:
This thesis investigates the legal, ethical, technical, and psychological issues of general data processing and artificial intelligence practices and the explainability of AI systems. It consists of two main parts. In the initial section, we provide a comprehensive overview of the big data processing ecosystem and the main challenges we face today. We then evaluate the GDPR’s data privacy framework in the European Union. The Trustworthy AI Framework proposed by the EU’s High-Level Expert Group on AI (AI HLEG) is examined in detail. The ethical principles for the foundation and realization of Trustworthy AI are analyzed along with the assessment list prepared by the AI HLEG. Then, we list the main big data challenges the European researchers and institutions identified and provide a literature review on the technical and organizational measures to address these challenges. A quantitative analysis is conducted on the identified big data challenges and the measures to address them, which leads to practical recommendations for better data processing and AI practices in the EU. In the subsequent part, we concentrate on the explainability of AI systems. We clarify the terminology and list the goals aimed at the explainability of AI systems. We identify the reasons for the explainability-accuracy trade-off and how we can address it. We conduct a comparative cognitive analysis between human reasoning and machine-generated explanations with the aim of understanding how explainable AI can contribute to human reasoning. We then focus on the technical and legal responses to remedy the explainability problem. In this part, GDPR’s right to explanation framework and safeguards are analyzed in-depth with their contribution to the realization of Trustworthy AI. Then, we analyze the explanation techniques applicable at different stages of machine learning and propose several recommendations in chronological order to develop GDPR-compliant and Trustworthy XAI systems.