5 resultados para BAEYER-VILLIGER MONOOXYGENASES

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of my Ph.D. research was to study the new synthetic ways for the production of adipic acid. Three different pathways were studied: i) oxidation of cyclohexanone with molecular oxygen using Keggin – heteropolycompounds as the catalyst, ii) Baeyer – Villiger oxidation of cyclohexanone with hydrogen peroxide in the presence of two different heterogeneous catalysts, titanium silicalite and silica grafted decatungstate, iii) two step synthesis of adipic acid starting from cyclohexene via 1,2-cyclohexanediol. The first step was catalyzed by H2WO4 in the presence of the phase transfer catalyst, the oxidant was hydrogen peroxide. The second step, oxidation of 1,2 – cyclohexanediol was performed in the presence of oxygen and the heterogeneous catalyst – ruthenium on alumina. The results of my research showed that: i) Oxidation of cyclohexanone with molecular oxygen using Keggin heteropolycompounds is possible, anyway the conversion of ketone is low and the selectivity to adipic acid is lowered by the consecutive reaction to from lower diacids. Moreover it was found out, that there are two mechanisms involved: redox type and radicalic chain-reaction autoxidation. The presence of the different mechanism is influenced by the reaction condition. ii) It is possible to perform thermally activated oxidation of cyclohexanone and obtain non negligible amount of the products (caprolactone and adipic acid). Performing the catalyzed reaction it was demonstrated that the choice of the reaction condition and of the catalyst plays a crucial role in the product selectivity, explaining the discrepancies between the literature and our research. iii) Interesting results can be obtained performing the two step oxidation of cyclohexene via 1,2-cyclohexanediol. In the presence of phase transfer catalyst it is possible to obtain high selectivity to alcohol with stoichiometric amount of oxidant. In the second step of the synthesis, the conversion of alcohol is rather low with modest selectivity to adipic acid

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of my PhD research project was to investigate new and more sustainable routes, compared to those currently used, for the production of adipic acid (AA). AA is a very important chemical intermediate. The main use of AA is the production of Nylon-6,6 fibers, resins, polyesters, plasticizers. My project was divided into two parts: 1. The two-step oxidation of cyclohexene, where the latter is first oxidized into trans-1,2-cyclohexanediol (CHD) with aqueous hydrogen peroxide, and then the glycol is transformed into AA by reaction with molecular oxygen. Various catalysts were investigated in this process, both heterogeneous (alumina-supported Ru(OH)x and Au nanoparticles supported on TiO2, MgO and Mg(OH)2) and homogeneous (polyoxometalates). We also studied the mechanism of CHD oxidation with oxygen in the presence of these catalysts. 2. Baeyer-Villiger oxidation of cyclohexanone with aqueous hydrogen peroxide into ɛ-caprolactone, as a first step on the way to produce AA. Study on the mechanism of the uncatalyzed (thermal) oxidation of cyclohexanone were also carried out. Investigation on how the different heterogeneous catalysts affect the formation of the reaction products and their distribution was done.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bioremediation implies the use of living organisms, primarily microorganisms, to convert environmental contaminants into less toxic forms. The impact of the consequences of hydrocarbon release in the environment maintain a high research interest in the study of microbial metabolisms associated with the biodegradation of aromatic and aliphatic hydrocarbons but also in the analysis of microbial enzymes that can convert petroleum substrates to value-added products. The studies described in this Thesis fall within the research field that directs the efforts into identifying gene/proteins involved in the catabolism of n-alkanes and into studying the regulatory mechanisms leading to their oxidation. In particular the studies were aimed at investigating the molecular aspects of the ability of Rhodococcus sp. BCP1 to grow on aliphatic hydrocarbons as sole carbon and energy sources. We studied the ability of Rhodococcus sp. BCP1 to grow on gaseous (C2-C4), liquid (C5-C16) and solid (C17-C28) n-alkanes that resulted to be biochemically correlated with the activity of one or more monooxygenases. In order to identify the alkane monooxygenase that is involved in the n-alkanes degradation pathway in Rhodococcus sp. BCP1, PCR-based methodology was applied by using degenerate primers targeting AlkB monooxygenase family members. As result, a chromosomal region, including the alkB gene cluster, was cloned from Rhodococcus sp. BCP1 genome. We characterized the products of this alkB gene cluster and the products of the orfs included in the flanking regions by comparative analysis with the homologues in the database. alkB gene expression studies were carried out by RT-PCR and by the construction of a promoter probe vector containing the lacZ gene downstream of the alkB promoter. B-galactosidase assays revealed the alkB promoter activity induced by n-alkanes and by n-alkanes metabolic products. Furthermore, the transcriptional start of alkB gene was determined by primer extension procedure. A proteomic approach was subsequently applied to compare the protein patterns expressed by BCP1 growing on n-butane, n-hexane, n-hexadecane or n-eicosane with the protein pattern expressed by BCP1 growing on succinate. The accumulation of enzymes specifically induced on n-alkanes was determined. These enzymes were identified by tandem mass spectrometry (LC/MS/MS). Finally, a prm gene, homologue to the gene family coding for soluble di-iron monooxygenases (SDIMOs), has been isolated from Rhodococcus sp. BCP1 genome. This gene product could be involved in the degradation of gaseous n-alkanes in this Rhodococcus strain. The versatility in utilizing hydrocarbons and the discovery of new remarkable metabolic activities outline the potential applications of this microorganism in environmental and industrial biotechnologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A reduced cancer risk associated with fruit and vegetable phytochemicals initially dictated chemopreventive approaches focused on specific green variety consumption or even single nutrient supplementations. However, these strategies not only failed to provide any health benefits but gave rise to detrimental effects. In parallel, public-health chemoprevention programmes were developed in the USA and Europe to increase whole vegetable consumption. Among these, the National Cancer Institute (NCI) sponsored plan “5 to 9 a day for a better health” was one of the most popular. This campaign promoted wide food choice through the consumption of at least 5 to 9 servings a day of colourful fruits and vegetables. In this study the effects of the diet suggested by NCI on transcription, translation and catalytic activity of both xenobiotic metabolizing (XME) and antioxidant enzymes were studied in the animal model. In fact, the boost of both antioxidant defences and “good” phase-II together with down-regulation of “bad” phase-I XMEs is still considered one of the most widely-used strategies of cancer control. Six male Sprague Dawley rats for each treatment group were used. According to the Italian Society of Human Nutrition, a serving of fruit, vegetables and leafy greens corresponds to 150, 250 and 50 g, respectively, in a 70 kg man. Proportionally, rats received one or five servings of lyophilized onion, tomato, peach, black grape or lettuce – for white, red, yellow, violet or green diet, respectively - or five servings of each green (“5 a day” diet) by oral gavage daily for 10 consecutive days. Liver subcellular fractions were tested for various cytochrome P450 (CYP) linked-monooxygenases, phase-II supported XMEs such as glutathione S-transferase (GST) and UDP-glucuronosyl transferase (UDPGT) as well as for some antioxidant enzymes. Hepatic transcriptional and translational effects were evaluated by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis, respectively. dROMs test was used to measure plasmatic oxidative stress. Routine haematochemical parameters were also monitored. While the five servings administration didn’t significantly vary XME catalytic activity, the lower dose caused a complex pattern of CYP inactivation with lettuce exerting particularly strong effects (a loss of up to 43% and 45% for CYP content and CYP2B1/2-linked XME, respectively; P<0.01). “5 a day” supplementation produced the most pronounced modulations (a loss of up to 60% for CYP2E1-linked XME and a reduction of CYP content of 54%; P<0.01). Testosterone hydroxylase activity confirmed these results. RT-PCR and Western blot analysis revealed that the “5 a day” diet XMEs inactivations were a result of both a transcriptional and a translational effect while lettuce didn’t exert such effects. All administrations brought out none or fewer modulation of phase-II supported XMEs. Apart from “5 a day” supplementation and the single serving of lettuce, which strongly induced DT- diaphorase (an increase of up to 141 and 171%, respectively; P<0.01), antioxidant enzymes were not significantly changed. RT-PCR analysis confirmed DT-diaphorase induction brought about by the administration of both “5 a day” diet and a single serving of lettuce. Furthermore, it unmasked a similar result for heme-oxygenase. dROMs test provided insight into a condition of high systemic oxidative stress as a consequence of animal diet supplementation with “5 a day” diet and a single serving of lettuce (an increase of up to 600% and 900%, respectively; P<0.01). Haematochemical parameters were mildly affected by such dietary manipulations. According to the classical chemopreventive theory, these results could be of particular relevance. In fact, even if antioxidant enzymes were only mildly affected, the phase-I inactivating ability of these vegetables would be a worthy strategy to cancer control. However, the recorded systemic considerable amount of reactive oxygen species and the complexity of these enzymes and their functions suggest caution in the widespread use of vegan/vegetarian diets as human chemopreventive strategies. In fact, recent literature rather suggests that only diets rich in fruits and vegetables and poor in certain types of fat, together with moderate caloric intake, could be associated with reduced cancer risk.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

I vegetali appartenenti alla famiglia delle Brassicaceae, sono ricchi di molecole biologicamente attive note per le numerose proprietà salutari. L’effetto di un estratto di germogli di cavolo nero toscano (TBCSE) è stato investigato, in termini chemiopreventivi, sugli enzimi epatici del metabolismo degli xenobiotici e antiossidanti, in ratti trattati con TBCSE. I risultati hanno mostrato un complesso pattern di modulazione, con una prevalente inibizione, del sistema citocromo P450-dipendente, e induzioni significative degli enzimi di fase II (glutatione transferasi e glucuronosiltransferasi) e antiossidanti (catalasi, NAD(P)H:chinone reduttasi, glutatione reduttasi e perossidasi). Successivamente, l’effetto di TBCSE è stato studiato nei confronti delle alterazioni provocate da un’alimentazione iperlipidica nel ratto. Il trattamento si è dimostrato efficace nel contrastare gli effetti deleteri dei grassi presenti nella dieta, come l’iperlipidemia, l’aumento del peso corporeo e del fegato, l’indebolimento delle attività degli enzimi antiossidanti e del potenziale detossificante a livello epatico. Complessivamente, TBCSE emerge essere un promettente prodotto nutraceutico con potenziali effetti chemiopreventivi, e da impiegare come strategia alimentare per contrastare gli effetti correlati ad una dieta iperlipidica. Il consumo di dosi sovralimentari di molecole isolate dalle Brassicaceae, tramite per esempio integratori dietetici, come strategia alimentare preventiva, potrebbe tuttavia rappresentare un rischio per la salute. La potenziale tossicità del sulforafane, glucorafanina, indolo-3-carbinolo, e 3,3'-diindolimetano, è stata valutata in epatociti primari di ratto. La citotossicità e l’induzione di stress ossidativo, osservate a concentrazioni non lontane da quelle che potrebbero essere raggiunte in vivo, insieme ad una forte modulazione dell’espressione genica, riguardante principalmente il metabolismo degli xenobiotici, risposte ad alterazioni dello stato ossidoredutivo, eventi di riparazione del DNA e di proteine, induzione dell’apoptosi, e meccanismi (co)cancerogeni, sottolineano la potenzialità di queste molecole di determinare un rischio tossicologico, in seguito ad un’assunzione prolungata e ad alte dosi.