11 resultados para B cell and CTL nef epitopes

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Herpes simplex virus 1 (HSV-1) infects oral epitelial cells, then spreads to the nerve endings and estabilishes latency in sensory ganglia, from where it may, or may not reactivate. Diseases caused by virus reactivation include mild diseases such as muco-cutaneous lesions, and more severe, and even life-threatening encephalitis, or systemic infections affecting diverse organs. Herpes simplex virus represents the most comprehensive example of virus receptor interaction in Herpesviridae family, and the prototype virus encoding multipartite entry genes. In fact, it encodes 11-12 glycoproteins and a number of additional membrane proteins: five of these proteins play key roles in virus entry into subsceptible cells. Thus, glycoprotein B (gB) and glycoprotein C (gC) interact with heparan sulfate proteoglycan to enable initial attachment to cell surfaces. In the next step, in the entry cascade, gD binds a specific surface receptor such as nectin1 or HVEM. The interaction of glycoprotein D with the receptor alters the conformation of gD to enable the activation of gB, glycoprotein H, and glycoprotein L, a trio of glycoproteins that execute the fusion of the viral envelope with the plasma membrane. In this thesis, I described two distinct projects: I. The retargeting of viral tropism for the design of oncolytic Herpesviruses: • capable of infecting cells through the human epitelial growth factor receptor 2 (HER2), overexpressed in highly malignant mammary and ovarian tumors and correlates with a poor prognosis; • detargeted from its natural receptors, HVEM and nectin1. To this end, we inserted a ligand to HER2 in gD. Because HER2 has no natural ligand, the selected ligand was a single chain antibody (scFv) derived from MAb4D5 (monoclonal antibody to HER2), herein designated scHER2. All recombinant viruses were targeted to HER2 receptor, but only two viruses (R-LM113 and R-LM249) were completely detargeted from HVEM and nectin1. To engineer R-LM113, we removed a large portion at the N-terminus of gD (from aa 6 to aa 38) and inserted scHER2 sequence plus 9-aa serine-glycine flexible linker at position 39. On the other hand, to engineer R-LM249, we replaced the Ig-folded core of gD (from aa 61 to aa 218) with scHER2 flanked by Ser-Gly linkers. In summary, these results provide evidence that: i. gD can tolerate an insert almost as big as gD itself; ii. the Ig-like domain of gD can be removed; iii. the large portion at the N-terminus of gD (from aa 6 to aa 38) can be removed without loss of key function; iv. R-LM113 and R-LM249 recombinants are ready to be assayed in animal models of mammary and ovary tumour. This finding and the avaibility of a large number of scFv greatly increase the collection of potential receptors to which HSV can be redirected. II. The production and purification of recombinant truncated form of the heterodimer gHgL. We cloned a stable insect cell line expressing a soluble form of gH in complex with gL under the control of a metalloprotein inducible promoter and purified the heterodimer by means of ONE-STrEP-tag system by IBA. With respect to biological function, the purified heterodimer is capable: • of reacting to antibodies that recognize conformation dependent epitopes and neutralize virion infectivity; • of binding a variety cells at cell surface. No doubt, the availability of biological active purified gHgL heterodimer, in sufficient quantities, will speed up the efforts to solve its crystal structure and makes it feasible to identify more clearly whether gHgL has a cellular partner, and what is the role of this interaction on virus entry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two major types of B cells, the antibody-producing cells of the immune system, are classically distinguished in the spleen: marginal zone (MZ) and follicular (FO). In addition, FO B cells are subdivided into FO I and FO II cells, based on the amount of surface IgM. MZ B cells, which surround the splenic follicles, rapidly produce IgM in response to blood-borne pathogens without T cell help, while T cell-dependent production of high affinity, isotype-switched antibodies is ascribed to FO I cells. The significance of FO II cells and the mechanism underlying B cell fate choices are unclear. We showed that FO II cells express more Sca1 than FO I cells and originate from a distinct B cell development program, marked by high expression of Sca1. MZ B cells can derive from the “canonical” Sca1lo pathways, as well as from the Sca1hi program, although the Sca1hi program shows a stronger MZ bias than the Sca1lo program, and extensive phenotypic plasticity exists between MZ and FO II, but not between MZ and FO I cells. The Sca1hi program is induced by hematopoietic stress and generates B cells with an Igλ-enriched repertoire. In aged mice, the canonical B cell development pathway is impaired, while the Sca1hi program is increased. Furthermore, we showed that a population of unknown function, defined as Lin-c-kit+Sca1+ (LSK-), contains early lymphoid precursors, with primarily B cell potential in vivo. Our data suggest that LSK- cells may represent a distinct precursor for the Sca1hi program in the bone marrow.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of vaccines directed against polysaccharide capsules of S. pneumoniae, H. influenzae and N. meningitidis have been of great importance in preventing potentially fatal infections. Bacterial capsular polysaccharides are T-cell-independent antigens that induce specific antibody response characterized by IgM immunoglobulins, with a very low IgG class switched response and lack of capability of inducing a booster response. The inability of pure polysaccharides to induce sustained immune responses has required the development of vaccines containing polysaccharides conjugated to a carrier protein, with the aim to generate T cell help. It is clear that the immunogenicity of glycoconjugate vaccines can vary depending on different factors, e.g. chemical nature of the linked polysaccharide, carrier protein, age of the target population, adjuvant used. The present study analyzes the memory B cell (MBC) response to the polysaccharide and to the carrier protein following vaccination with a glycoconjugate vaccine for the prevention of Group B streptococcus (GBS) infection. Not much is known about the role of adjuvants in the development of immunological memory raised against GBS polysaccharides, as well as about the influence of having a pre-existing immunity against the carrier protein on the B cell response raised against the polysaccharide component of the vaccine. We demonstrate in the mouse model that adjuvants can increase the antibody and memory B cell response to the carrier protein and to the conjugated polysaccharide. We also demonstrate that a pre-existing immunity to the carrier protein favors the development of the antibody and memory B cell response to subsequent vaccinations with a glycoconjugate, even in absence of adjuvants. These data provide a useful insight for a better understanding of the mechanism of action of this class of vaccines and for designing the best vaccine that could result in a productive and long lasting memory response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recent finding that MYC-driven cancers are sensitive to inhibition of the DNA damage response (DDR) pathway, prompted us to investigate the role of DDR pathway as therapeutic target in diffuse large B-cell lymphoma (DLBCL), which frequently overexpresses the MYC oncogene. In a preliminary immunohistochemical study conducted on 99 consecutive DLBCL patients, we found that about half of DLBCLs showed constitutive expression of the phosphorylated forms of checkpoint kinases (CHK) and CDC25c, markers of DDR activation, and of phosphorylated histone H2AX (γH2AX), marker of DNA damage and genomic instability. Constitutive γH2AX expression correlated with c-MYC levels and DDR activation, and defined a subset of tumors characterised by poor outcome. Next, we used the CHK inhibitor PF-0477736 as a tool to investigate whether the inhibition of the DDR pathway might represent a novel therapeutic approach in DLBCL. Submicromolar concentrations of PF-0477736 hindered proliferation in DLBCL cell lines with activated DDR pathway. These results were fully recapitulated with a different CHK inhibitor (AZD-7762). Inhibition of checkpoint kinases induced rapid DNA damage accumulation and apoptosis in DLBCL cell lines and primary cells. These data suggest that pharmacologic inhibition of DDR through targeting of CHK kinases may represent a novel therapeutic strategy in DLBCL. The second part of this work is the clinical, molecular and functional description of a paradigmatic case of primary refractory Burkitt lymphoma characterized by spatial intratumor heterogeneity for the TP53 mutational status, high expression levels of genomic instability and DDR activation markers, primary resistance to chemotherapy and exquisite sensitivity to DDR inhibitors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Backgrounds:Treatment of patients with relapsed/refractory (R/R) diffuse large B-cell lymphoma (DLBCL) not eligible to high dose therapy represents an unmet medical need. Panobinostat showed encouraging therapeutic activity in studies conducted in lymphoma cell lines and in vivo in patients with advanced hematologic malignancies.Purpose:FIL-PanAL10 (NCT01523834) is a phase II, prospective multicenter trial of the Fondazione Italiana Linfomi (FIL) to evaluate safety and efficacy of single agent Panobinostat as salvage therapy for R/R DLBCL patients and to evaluate a possible relationships between response and any biological features. Patients and Methods:Patients with R/R DLBCL were included. The treatment plan included 6 induction courses with Panobinostat monotherapy followed by other 6 courses of consolidation. The primary objective was to evaluate Panobinostat activity in terms of overall response (OR); secondary objectives were: CR rate, time to response (TTR), progression-free survival (PFS), safety and feasibility of Panobinostat. We included evaluation of the impact of pharmacogenetics, immunohistochemical patterns and patient’s specific gene expression and mutations as potential predictors of response to Panobinostat as explorative objectives. To this aim a pre-enrollment new tissue biopsy was mandatory. ResultsThirty-five patients, 21 males (60%), were enrolled between June 2011 and March 2014. At the end of induction phase, 7 responses (20%) were observed, including 4 CR (11%), while 28 patients (80%) discontinued treatment due to progressive disease (PD) in 21 (60%) or adverse events in 7 (20%). Median TTR in 9 responders was 2.6 months (range 1.8-12). With a median follow up of 6 months (range 1-34), the estimated 12 months PFS and OS were 27% and 30.5%, respectively. Grade 3-4 thrombocytopenia and neutropenia were the most common toxicities (in 29 (83%) and 12 (34%) patients, respectively. Conclusions The results of this study indicate that Panobinostat might be remarkably active in some patients with R/R DLBCL, showing durable CR

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The treatment of B-cell acute lymphoblastic leukemia (B-ALL) has been enriched by novel agents targeting surface markers CD19 and CD22. Inotuzumab ozogamicin (INO) is a CD22-calicheamicin conjugated monoclonal antibody approved in the setting of relapse/refractory (R/R) B-ALL able to induce a high rate of deep responses, not durable over time. Aims: This study aims to identify predictive biomarkers to INO treatment in B- ALL by flow cytometric analysis of CD22 expression and gene expression profile. Materials and methods: Firstly, the impact on patient outcome in 30 R/R B-ALL patients of baseline CD22 expression in terms of CD22 blast percentage and CD22 fluorescent intensity (CD22-FI) was explored. Secondly, baseline gene expression profile of 18 R/R B-ALL patient samples was analyzed. For statistical analysis of differentially expressed genes (DEGs) patients were divided in non-responders (NR), defined as either INO-refractory or with duration of response (DoR) < 3 months, and responders (R). Gene expression results were analyzed with Ingenuity pathway analysis (IPA). Results: In our patient set higher CD22-FI, defined as higher quartiles (Q2-Q4), correlated with better patient outcome in terms of CR rate, OS and DoR, compared to lower CD22-FI (Q1). CD22 blast percentage was less able to discriminate patients’ outcome, although a trend for better outcome in patients with CD22 ≥ 90% could be appreciated. Concerning gene expression profile, 32 genes with corrected p value <0.05 and absolute FC ≥2 were differentially expressed in NR as compared to R. IPA upstream regulator and regulator effect analysis individuated the inhibition of tumor suppressor HIPK2 as causal upstream condition of the downregulation of 6 DEGs. Conclusions: CD22-FI integrates CD22-percentage on leukemic blasts for a more comprehensive target pre-treatment evaluation. Moreover, a unique pattern of gene expression signature based on HIPK2 downregulation was identified, providing important insights in mechanisms of resistance to INO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The production rate of $b$ and $\bar{b}$ hadrons in $pp$ collisions are not expected to be strictly identical, due to imbalance between quarks and anti-quarks in the initial state. This phenomenon can be naively related to the fact that the $\bar{b}$ quark produced in the hard scattering might combine with a $u$ or $d$ valence quark from the colliding protons, whereas the same cannot happen for a $b$ quark. This thesis presents the analysis performed to determine the production asymmetries of $B^0$ and $B^0_s$. The analysis relies on data samples collected by the LHCb detector at the Large Hadron Collider (LHC) during the 2011 and 2012 data takings at two different values of the centre of mass energy $\sqrt{s}=7$ TeV and at $\sqrt{s}=8$ TeV, corresponding respectively to an integrated luminosity of 1 fb$^{-1}$ and of 2 fb$^{-1}$. The production asymmetry is one of the key ingredients to perform measurements of $CP$ violation in b-hadron decays at the LHC, since $CP$ asymmetries must be disentangled from other sources. The measurements of the production asymmetries are performed in bins of $p_\mathrm{T}$ and $\eta$ of the $B$-meson. The values of the production asymmetries, integrated in the ranges $4 < p_\mathrm{T} < 30$ GeV/c and $2.5<\eta<4.5$, are determined to be: \begin{equation} A_\mathrm{P}(\B^0)= (-1.00\pm0.48\pm0.29)\%,\nonumber \end{equation} \begin{equation} A_\mathrm{P}(\B^0_s)= (\phantom{-}1.09\pm2.61\pm0.61)\%,\nonumber \end{equation} where the first uncertainty is statistical and the second is systematic. The measurement of $A_\mathrm{P}(B^0)$ is performed using the full statistics collected by LHCb so far, corresponding to an integrated luminosity of 3 fb$^{-1}$, while the measurement of $A_\mathrm{P}(B^0_s)$ is realized with the first 1 fb$^{-1}$, leaving room for improvement. No clear evidence of dependences on the values of $p_\mathrm{T}$ and $\eta$ is observed. The results presented in this thesis are the most precise measurements available up to date.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid organ transplantation (SOT) is considered the treatment of choice for many end-stage organ diseases. Thus far, short term results are excellent, with patient survival rates greater than 90% one year post-surgery, but there are several problems with the long term acceptance and use of immunosuppressive drugs. Hematopoietic Stem Cells Transplantation (HSCT) concerns the infusion of haematopoietic stem cells to re-establish acquired and congenital disorders of the hematopoietic system. The main side effect is the Graft versus Host Disease (GvHD) where donor T cells can cause pathology involving the damage of host tissues. Patients undergoing acute or chronic GvHD receive immunosuppressive regimen that is responsible for several side effects. The use of immunosuppressive drugs in the setting of SOT and GvHD has markedly reduced the incidence of acute rejection and the tissue damage in GvHD however, the numerous adverse side effects observed boost the development of alternative strategies to improve the long-term outcome. To this effect, the use of CD4+CD25+FOXP3+ regulatory T cells (Treg) as a cellular therapy is an attractive approach for autoimmunity disease, GvHD and limiting immune responses to allograft after transplantation. Treg have a pivotal role in maintaining peripheral immunological tolerance, by preventing autoimmunity and chronic inflammation. Results of my thesis provide the characterization and cell processing of Tregs from healthy controls and patients in waiting list for liver transplantation, followed by the development of an efficient expansion-protocol and the investigation of the impact of the main immunosuppressive drugs on viability, proliferative capacity and function of expanded cells after expansion. The conclusion is that ex vivo expansion is necessary to infuse a high Treg dose and although many other factors in vivo can contribute to the success of Treg therapy, the infusion of Tregs during the administration of the highest dose of immunosuppressants should be carefully considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ribosome-inactivating proteins (RIPs) are a family of plant toxic enzymes that permanently damage ribosomes and possibly other cellular substrates, thus causing cell death involving different and still not completely understood pathways. The high cytotoxic activity showed by many RIPs makes them ideal candidates for the production of immunotoxins (ITs), chimeric proteins designed for the selective elimination of unwanted or malignant cells. Saporin-S6, a type 1 RIP extracted from Saponaria officinalis L. seeds, has been extensively employed to construct anticancer conjugates because of its high enzymatic activity, stability and resistance to conjugation procedures, resulting in the efficient killing of target cells. Here we investigated the anticancer properties of two saporin-based ITs, anti-CD20 RTX/S6 and anti-CD22 OM124/S6, designed for the experimental treatment of B-cell NHLs. Both ITs showed high cytotoxicity towards CD20-positive B-cells, and their antitumor efficacy was enhanced synergistically by a combined treatment with proteasome inhibitors or fludarabine. Furthermore, the two ITs showed differencies in potency and ability to activate effector caspases, and a different behavior in the presence of the ROS scavenger catalase. Taken together, these results suggest that the different carriers employed to target saporin might influence saporin intracellular routing and saporin-induced cell death mechanisms. We also investigated the early cellular response to stenodactylin, a recently discovered highly toxic type 2 RIP representing an interesting candidate for the design and production of a new IT for the experimental treatment of cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A large fraction of organ transplant recipients develop anti-donor antibodies (DSA), with accelerated graft loss and increased mortality. We tested the hypothesis that erythropoietin (EPO) reduces DSA formation by inhibiting T follicular helper (TFH) cells. We measured DSA levels, splenic TFH, TFR cells, germinal center (GC), and class switched B cells, in murine models of allogeneic sensitization, allogeneic transplantation and in parent-to-F1 models of graft versus host disease (GVHD). We quantified the same cell subsets and specific antibodies, upon EPO or vehicle treatment, in wild type mice and animals lacking EPO receptor selectively on T or B cells, immunized with T-independent or T-dependent stimuli. In vitro, we tested the EPO effect on TFH induction. We isolated TFH and TFR cells to perform in vitro assay and clarify their role. EPO reduced DSA levels, GC, class switched B cells, and increased the TFR/TFH ratio in the heart transplanted mice and in two GVHD models. EPO did also reduce TFH and GC B cells in SRBC-immunized mice, while had no effect in TNP-AECM-FICOLL-immunized animals, indicating that EPO inhibits GC B cells by targeting TFH cells. EPO effects were absent in T cells EPOR conditional KO mice, confirming that EPO affects TFH in vivo through EPOR. In vitro, EPO affected TFH induction through an EPO-EPOR-STAT5-dependent pathway. Suppression assay demonstrated that the reduction of IgG antibodies was dependent on TFH cells, sustaining the central role of the subset in this EPO-mediated mechanism. In conclusion, EPO prevents DSA formation in mice through a direct suppression of TFH. Development of DSA is associated with high risk of graft rejection, giving our data a strong rationale for studies testing the hypothesis that EPO administration prevents their formation in organ transplant recipients. Our findings provide a foundation for testing EPO as a treatment of antibody mediated disease processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last few years, the introduction of chimeric antigen receptor (CAR) T-cell therapy into clinical practice has revolutionized the approach to patients with relapsed/refractory (R/R) large B-cell lymphoma (LBCL), whose outcome used to be dismal with median overall survival (OS) of approximately 6 months with standard salvage therapy. At our Institute, we started treating diffuse large B-cell lymphoma (DLBCL) patients with CAR T-cell products in August 2019 and they received either axicabtagene ciloleucel (axi-cel) and tisagenlecleucel (tisa-cel) as per regulatory indications. This research project presents the 2-year follow-up of the first 53 treated patients. Our first aim is to investigate the feasibility of this treatment strategy in a real-world setting, although the reimbursement criteria set by the Italian Medicines Agency (Agenzia Italiana del Farmaco, AIFA) are very similar to the inclusion criteria of clinical trials and stricter than those established by the regulatory authorities of many foreign countries. One month after infusion, the ORR was 66% with 19 patients already in CR (38%). Restaging at 3, 6 and 12 months post-infusion shows that early CRs tend to be maintained over time and, moreover, that a considerable number of PRs and a few SDs can improve into a CR. The safety data were consistent with what is reported in the literature; toxicity was generally manageable, largely due to the increasing expertise in handling the specific adverse events related to CAR T-cell therapy. Our results confirms that CAR T-cell therapy is both safe and effective in a real-life setting and that it represents a crucial weapon in a subset of patients who were previously doomed to an inevitably severe prognosis.