10 resultados para Axillary Dissection
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Background: Axillary lymph node dissection (ALND) in presence of sentinel lymph node (SLN) metastases has been the standard in breast cancer (BC) patients for many years. Today, after the publication of the ACOSOG Z0011 trial, ALND is a procedure restricted to a dwindling group of patients with a clearly metastatic axilla. Material and methods: This was a prospective observational trial involving two Italian Breast Units: Policlinico di Sant’Orsola and San Raffaele hospital. Objective was to evaluate that the omission of ALND in patients with cT1-2 cN0 BC undergoing breast conserving surgery (BCS) and histological finding of metastases in 1 or 2 SLN is not associated with a worse prognostic outcome. Primary endpoint was overall survival (OS). Secondary endpoints were disease free survival (DFS) and locoregional recurrence. All BC patients treated between the 1st of November 2020 and 31st of July 2023 with cT1-2 cN0 BC, preoperative negative axillary ultrasound and 1 or 2 metastatic SLN treated with sentinel node biopsy (SLNB) alone entered the study. Results: 795 cT1-2 cN0 BC patients underwent BCS and SLNB. Ninety patients were included. Median age was 60 (52-68) years. Seventy-five patients (83%) had T1 tumor and 15 (17%) T2. Median tumor size was 16 mm (11-19). The median SLN removed was 2 (1-3). Eighty-one patients had 1 positive SLN (90%), while 9 had 2 SLN metastasis (10%). 39 (43%) micrometastases were identified and 51 macrometastasis (57%). All patients underwent radiotherapy. Seventeen (19%) performed adjuvant chemotherapy. Two received immunotherapy with trastuzumab and pertuzumab. Endocrine therapy was given to 84 (93%). At a median follow-up of 19 months (IQR 13-23) OS and DFS were 100%. No loco-regional recurrence was seen. Conclusion: The preliminary results of our study confirm that omitting ALND in patients meeting Z011 criteria is oncologically safe and should be the standard of care.
Resumo:
Neisseria meningitidis serogroup B is the major etiological agent of meningitis and life-threatening sepsis, against which two vaccines are licensed. The 4CMenB vaccine is composed of three major protein antigens (fHbp, NHBA and NadA) and detergent-extracted outer membrane vesicles (DOMV) from the NZ98/254 strain. DOMV are safe, immunogenic and able to raise bactericidal antibodies, mainly attributed to the immunodominant PorA protein. Nevertheless, DOMV offer a complex reservoir of potentially immunogenic proteins, whose relative contribution in protection is still poorly characterized. By testing antisera from vaccinated infants in serum bactericidal assay, we observed that the addition of DOMV in the vaccine formulation enhanced breadth of coverage compared to recombinant proteins alone against a panel of 11 meningococcal strains mismatched for the vaccine antigens. To unravel the DOMV components involved in such protection, 30 DOMV antigens were cloned and expressed in Escherichia coli as recombinant proteins and/or in vesicles to maintain their native conformation. Samples obtained were both included in tailor-made protein-microarrays to immunoprofile the antibody repertoire raised by DOMV-containing formulations and were individually used for mouse immunization studies to assess their ability to induce bactericidal antibodies. The protein-array immunosignature of mouse DOMV/4CMenB antisera unveiled a subset of 8 DOMV-reactive proteins potentially responsible for the additional protective responses. The antisera derived from mouse immunizations showed high levels of antibodies and recognized the corresponding antigen across different meningococcal strains. Among the protein-array reactive antigens, OpcA, NspA and PorB induced antibodies able to kill 10 of the 11 genetically diverse meningococcal strains and the specificity of the protective role of OpcA and PorB was also confirmed in 4CMenB infant vaccinee sera. In conclusion, we identified additional PorA-independent antigens within DOMV involved in broadening the coverage of 4CMenB, thus supporting the key role played by vesicles in this multivalent formulation.
Resumo:
Myc is a transcription factor that can activate transcription of several hundreds genes by direct binding to their promoters at specific DNA sequences (E-box). However, recent studies have also shown that it can exert its biological role by repressing transcription. Such studies collectively support a model in which c-Myc-mediated repression occurs through interactions with transcription factors bound to promoter DNA regions but not through direct recognition of typical E-box sequences. Here, we investigated whether N-Myc can also repress gene transcription, and how this is mechanistically achieved. We used human neuroblastoma cells as a model system in that N-MYC amplification/over-expression represents a key prognostic marker of this tumour. By means of transcription profile analyses we could identify at least 5 genes (TRKA, p75NTR, ABCC3, TG2, p21) that are specifically repressed by N-Myc. Through a dual-step-ChIP assay and genetic dissection of gene promoters, we found that N-Myc is physically associated with gene promoters in vivo, in proximity of the transcription start site. N-Myc association with promoters requires interaction with other proteins, such as Sp1 and Miz1 transcription factors. Furthermore, we found that N-Myc may repress gene expression by interfering directly with Sp1 and/or with Miz1 activity (i.e. TRKA, p75NTR, ABCC3, p21) or by recruiting Histone Deacetylase 1 (Hdac1) (i.e. TG2). In vitro analyses show that distinct N-Myc domains can interact with Sp1, Miz1 and Hdac1, supporting the idea that Myc may participate in distinct repression complexes by interacting specifically with diverse proteins. Finally, results show that N-Myc, through repressed genes, affects important cellular functions, such as apoptosis, growth, differentiation and motility. Overall, our results support a model in which N-Myc, like c-Myc, can repress gene transcription by direct interaction with Sp1 and/or Miz1, and provide further lines of evidence on the importance of transcriptional repression by Myc factors in tumour biology.
Resumo:
In two Italian sites, multiaxis trees slightly reduced primary axis length and secondary axis length of newly grafted trees, and increased the number of secondary shoots. The total length, node production, and total dry matter gain were proportional to the number of axis. Growth of both primary and secondary shoots, and dry matter accumulation, have been found to be also well related to rootstock vigour. A great variability in axillary shoot production was recorded among different environments. Grafted trees had higher primary growth, secondary axis growth, and dry matter gain than chip budded trees. Stem water potential measured in the second year after grafting was not affected by rootstocks or number of leaders. Measurements performed in New Zealand (Hawke’s Bay) during the second year after grafting revealed that both final length and growth rate of primary and secondary axis were related to the rootstock rather than to the training system. Dwarfing rootstocks reduced the number of long vegetative shoots and increased the proportion of less vigorous shoots.
Resumo:
L’insufficienza renale acuta(AKI) grave che richiede terapia sostitutiva, è una complicanza frequente nelle unità di terapia intensiva(UTI) e rappresenta un fattore di rischio indipendente di mortalità. Scopo dello studio é stato valutare prospetticamente, in pazienti “critici” sottoposti a terapie sostitutive renali continue(CRRT) per IRA post cardiochirurgia, la prevalenza ed il significato prognostico del recupero della funzione renale(RFR). Pazienti e Metodi:Pazienti(pz) con AKI dopo intervento di cardiochirurgia elettivo o in emergenza con disfunzione di due o più organi trattati con CRRT. Risultati:Dal 1996 al 2011, 266 pz (M 195,F 71, età 65.5±11.3aa) sono stati trattati con CRRT. Tipo di intervento: CABG(27.6%), dissecazione aortica(33%), sostituzione valvolare(21.1%), CABG+sostituzione valvolare(12.6%), altro(5.7%). Parametri all’inizio del trattamento: BUN 86.1±39.4, creatininemia(Cr) 3.96±1.86mg/dL, PAM 72.4±13.6mmHg, APACHE II score 30.7±6.1, SOFAscore 13.7±3. RIFLE: Risk (11%), Injury (31.4%), Failure (57.6%). AKI oligurica (72.2%), ventilazione meccanica (93.2%), inotropi (84.5%). La sopravvivenza a 30 gg ed alla dimissione è stata del 54.2% e del 37.1%. La sopravvivenza per stratificazione APACHE II: <24=85.1 e 66%, 25-29=63.5 e 48.1%, 30-34=51.8 e 31.8%, >34=31.6 e 17.7%. RFR ha consentito l’interruzione della CRRT nel 87.8% (86/98) dei survivors (Cr 1.4±0.6mg/dL) e nel 14.5% (24/166) dei nonsurvivors (Cr 2.2±0.9mg/dL) con un recupero totale del 41.4%. RFR è stato osservato nel 59.5% (44/74) dei pz non oligurici e nel 34.4% dei pz oligurici (66/192). La distribuzione dei pz sulla base dei tempi di RFR è stata:<8=38.2%, 8-14=20.9%, 15-21=11.8%, 22-28=10.9%, >28=18.2%. All’analisi multivariata, l’oliguria, l’età e il CV-SOFA a 7gg dall’inizio della CRRT si sono dimostrati fattori prognostici sfavorevoli su RFR(>21gg). RFR si associa ad una sopravvivenza elevata(78.2%). Conclusioni:RFR significativamente piu frequente nei pz non oligurici si associa ad una sopravvivenza alla dimissione piu elevata. La distribuzione dei pz in rapporto ad APACHE II e SOFAscore dimostra che la sopravvivenza e RFR sono strettamente legati alla gravità della patologia.
Resumo:
Pulmonary arterial hypertension (PAH) is a progressive and rare disease with so far unclear pathogenesis, limited treatment options and poor prognosis. Unbalance of proliferation and migration in pulmonary arterial smooth muscle cells (PASMCs) is an important hallmark of PAH. In this research Sodium butyrate (BU) has been evaluated in vitro and in vivo models of PAH. This histone deacetylase inhibitor (HDACi) counteracted platelet-derived growth factor (PDGF)-induced ki67 expression in PASMCs, and arrested cell cycle mainly at G0/G1 phases. Furthermore, BU reduced the transcription of PDGFRbeta, and that of Ednra and Ednrb, two major receptors in PAH progression. Wound healing and pulmonary artery ring assays indicated that BU inhibited PDGF-induced PASMC migration. BU strongly inhibited PDGF-induced Akt phosphorylation, an effect reversed by the phosphatase inhibitor calyculinA. In vivo, BU showed efficacy in monocrotaline-induced PAH in rats. Indeed, the HDACi reduced both thickness of distal pulmonary arteries and right ventricular hypertrophy. Besides these studies, Serial Analysis of Gene Expression (SAGE) has be used to obtain complete transcriptional profiles of peripheral blood mononuclear cells (PBMCs) isolated from PAH and Healthy subjects. SAGE allows quantitative analysis of thousands transcripts, relying on the principle that a short oligonucleotide (tag) can uniquely identify mRNA transcripts. Tag frequency reflects transcript abundance. We enrolled patients naïve for a specific PAH therapy (4 IPAH non-responder, 3 IPAH responder, 6 HeritablePAH), and 8 healthy subjects. Comparative analysis revealed that significant differential expression was only restricted to a hundred of down- or up-regulated genes. Interestingly, these genes can be clustered into functional networks, sharing a number of crucial features in cellular homeostasis and signaling. SAGE can provide affordable analysis of genes amenable for molecular dissection of PAH using PBMCs as a sentinel, surrogate tissue. Altogether, these findings may disclose novel perspectives in the use of HDACi in PAH and potential biomarkers.
Resumo:
Multiparental cross designs for mapping quantitative trait loci (QTL) in crops are efficient alternatives to conventional biparental experimental populations because they exploit a broader genetic basis and higher mapping resolution. We describe the development and deployment of a multiparental recombinant inbred line (RIL) population in durum wheat (Triticum durum Desf.) obtained by crossing four elite cultivars characterized by different traits of agronomic value. A linkage map spanning 2,663 cM and including 7,594 single nucleotide polymorphisms (SNPs) was produced by genotyping 338 RILs with a wheat-dedicated 90k SNP chip. A cluster file was developed for correct allele calling in the framework of the tetraploid durum wheat genome. Based on phenotypic data collected over four field experiments, a multi-trait quantitative trait loci (QTL) analysis was carried out for 18 traits of agronomic relevance (including yield, yield-components, morpho-physiological and seed quality traits). Across environments, a total of 63 QTL were identified and characterized in terms of the four founder haplotypes. We mapped two QTL for grain yield across environments and 23 QTL for grain yield components. A novel major QTL for number of grain per spikelet/ear was mapped on chr 2A and shown to control up to 39% of phenotypic variance in this cross. Functionally different QTL alleles, in terms of direction and size of genetic effect, were distributed among the four parents. Based on the occurrence of QTL-clusters, we characterized the breeding values (in terms of effects on yield) of most of QTL for heading and maturity as well as yield component and quality QTL. This multiparental RIL population provides the wheat community with a highly informative QTL mapping resource enabling the dissection of the genetic architecture of multiple agronomic relevant traits in durum wheat.
Resumo:
La studio dell’Anatomia umana presenta una varietà di sfaccettature, che sono alla base della reale comprensione del corpo umano; ovvero la vera anatomia non è quella rappresentata nei testi ma quella che appare durante la dissezione o nelle più sofisticate analisi di immagine. Lo scopo di questa tesi è stato quello di rivisitare alcune situazioni vascolari che possono andare incontro a variazioni e cercare di comprendere, anche con l’aiuto della bibliografia, se tali variazioni possono essere causa o epifenomeni di patologie a carico delle arterie affette dalle variazioni stesse o di territori da esse dipendenti per l’afflusso sanguigno. E’ stata condotta una analisi su preparati cadaverici in particolare in tre distretti: a) addome e tripode celiaco/mesenterica superiore; b) circolo cerebrale; d) orco aortico.
Resumo:
Traditional cell culture models have limitations in extrapolating functional mechanisms that underlie strategies of microbial virulence. Indeed during the infection the pathogens adapt to different tissue-specific environmental factors. The development of in vitro models resembling human tissue physiology might allow the replacement of inaccurate or aberrant animal models. Three-dimensional (3D) cell culture systems are more reliable and more predictive models that can be used for the meaningful dissection of host–pathogen interactions. The lung and gut mucosae often represent the first site of exposure to pathogens and provide a physical barrier against their entry. Within this context, the tracheobronchial and small intestine tract were modelled by tissue engineering approach. The main work was focused on the development and the extensive characterization of a human organotypic airway model, based on a mechanically supported co-culture of normal primary cells. The regained morphological features, the retrieved environmental factors and the presence of specific epithelial subsets resembled the native tissue organization. In addition, the respiratory model enabled the modular insertion of interesting cell types, such as innate immune cells or multipotent stromal cells, showing a functional ability to release pertinent cytokines differentially. Furthermore this model responded imitating known events occurring during the infection by Non-typeable H. influenzae. Epithelial organoid models, mimicking the small intestine tract, were used for a different explorative analysis of tissue-toxicity. Further experiments led to detection of a cell population targeted by C. difficile Toxin A and suggested a role in the impairment of the epithelial homeostasis by the bacterial virulence machinery. The described cell-centered strategy can afford critical insights in the evaluation of the host defence and pathogenic mechanisms. The application of these two models may provide an informing step that more coherently defines relevant molecular interactions happening during the infection.
Resumo:
La Valvola Aortica Bicuspide (BAV) rappresenta la più comune anomalia cardiaca congenita, con un’incidenza dello 0,5%-2% nella popolazione generale. Si caratterizza per la presenza di due cuspidi valvolari anziché tre e comprende diverse forme. La BAV è frequentemente associata agli aneurismi dell’aorta toracica (TAA). La dilatazione dell’aorta espone al rischio di sviluppare le complicanze aortiche acute. Materiali e metodi Sono stati reclutati 20 probandi consecutivi sottoposti a chirurgia della valvola aortica e dell'aorta ascendente presso l'Unità di Chirurgia Cardiaca di Policlinico S.Orsola-Malpighi di TAA associata a BAV. Sono stati esclusi individui con una condizione sindromica predisponente l’aneurisma aortico. Ciascun familiare maggiorenne di primo grado è stato arruolato nello studio. L’analisi di mutazioni dell’intero gene ACTA2 è stata eseguita con la tecnica del “bidirectional direct sequencing”. Nelle forme familiari, l’intera porzione codificante del genoma è stata eseguita usando l’exome sequencing. Risultati Dopo il sequenziamento di tutti i 20 esoni e giunzioni di splicing di ACTA2 nei 20 probandi, non è stata individuata alcuna mutazione. Settantasette familiari di primo grado sono stati arruolati. Sono state identificate cinque forme familiari. In una famiglia è stata trovata una mutazione del gene MYH11 non ritenuta patogenetica. Conclusioni La mancanza di mutazioni, sia nelle forme sporadiche sia in quelle familiari, ci suggerisce che questo gene non è coinvolto nello sviluppo della BAV e TAA e, l’associazione che è stata riportata deve essere considerata occasionale. L’architettura genetica della BAV verosimilmente dovrebbe consistere in svariate differenti varianti genetiche che interagiscono in maniera additiva nel determinare un aumento del rischio.