5 resultados para Average Case Complexity
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The development of High-Integrity Real-Time Systems has a high footprint in terms of human, material and schedule costs. Factoring functional, reusable logic in the application favors incremental development and contains costs. Yet, achieving incrementality in the timing behavior is a much harder problem. Complex features at all levels of the execution stack, aimed to boost average-case performance, exhibit timing behavior highly dependent on execution history, which wrecks time composability and incrementaility with it. Our goal here is to restitute time composability to the execution stack, working bottom up across it. We first characterize time composability without making assumptions on the system architecture or the software deployment to it. Later, we focus on the role played by the real-time operating system in our pursuit. Initially we consider single-core processors and, becoming less permissive on the admissible hardware features, we devise solutions that restore a convincing degree of time composability. To show what can be done for real, we developed TiCOS, an ARINC-compliant kernel, and re-designed ORK+, a kernel for Ada Ravenscar runtimes. In that work, we added support for limited-preemption to ORK+, an absolute premiere in the landscape of real-word kernels. Our implementation allows resource sharing to co-exist with limited-preemptive scheduling, which extends state of the art. We then turn our attention to multicore architectures, first considering partitioned systems, for which we achieve results close to those obtained for single-core processors. Subsequently, we shy away from the over-provision of those systems and consider less restrictive uses of homogeneous multiprocessors, where the scheduling algorithm is key to high schedulable utilization. To that end we single out RUN, a promising baseline, and extend it to SPRINT, which supports sporadic task sets, hence matches real-world industrial needs better. To corroborate our results we present findings from real-world case studies from avionic industry.
Resumo:
In this work we study the relation between crustal heterogeneities and complexities in fault processes. The first kind of heterogeneity considered involves the concept of asperity. The presence of an asperity in the hypocentral region of the M = 6.5 earthquake of June 17-th, 2000 in the South Iceland Seismic Zone was invoked to explain the change of seismicity pattern before and after the mainshock: in particular, the spatial distribution of foreshock epicentres trends NW while the strike of the main fault is N 7◦ E and aftershocks trend accordingly; the foreshock depths were typically deeper than average aftershock depths. A model is devised which simulates the presence of an asperity in terms of a spherical inclusion, within a softer elastic medium in a transform domain with a deviatoric stress field imposed at remote distances (compressive NE − SW, tensile NW − SE). An isotropic compressive stress component is induced outside the asperity, in the direction of the compressive stress axis, and a tensile component in the direction of the tensile axis; as a consequence, fluid flow is inhibited in the compressive quadrants while it is favoured in tensile quadrants. Within the asperity the isotropic stress vanishes but the deviatoric stress increases substantially, without any significant change in the principal stress directions. Hydrofracture processes in the tensile quadrants and viscoelastic relaxation at depth may contribute to lower the effective rigidity of the medium surrounding the asperity. According to the present model, foreshocks may be interpreted as induced, close to the brittle-ductile transition, by high pressure fluids migrating upwards within the tensile quadrants; this process increases the deviatoric stress within the asperity which eventually fails, becoming the hypocenter of the mainshock, on the optimally oriented fault plane. In the second part of our work we study the complexities induced in fault processes by the layered structure of the crust. In the first model proposed we study the case in which fault bending takes place in a shallow layer. The problem can be addressed in terms of a deep vertical planar crack, interacting with a shallower inclined planar crack. An asymptotic study of the singular behaviour of the dislocation density at the interface reveals that the density distribution has an algebraic singularity at the interface of degree ω between -1 and 0, depending on the dip angle of the upper crack section and on the rigidity contrast between the two media. From the welded boundary condition at the interface between medium 1 and 2, a stress drop discontinuity condition is obtained which can be fulfilled if the stress drop in the upper medium is lower than required for a planar trough-going surface: as a corollary, a vertically dipping strike-slip fault at depth may cross the interface with a sedimentary layer, provided that the shallower section is suitably inclined (fault "refraction"); this results has important implications for our understanding of the complexity of the fault system in the SISZ; in particular, we may understand the observed offset of secondary surface fractures with respect to the strike direction of the seismic fault. The results of this model also suggest that further fractures can develop in the opposite quadrant and so a second model describing fault branching in the upper layer is proposed. As the previous model, this model can be applied only when the stress drop in the shallow layer is lower than the value prescribed for a vertical planar crack surface. Alternative solutions must be considered if the stress drop in the upper layer is higher than in the other layer, which may be the case when anelastic processes relax deviatoric stress in layer 2. In such a case one through-going crack cannot fulfil the welded boundary conditions and unwelding of the interface may take place. We have solved this problem within the theory of fracture mechanics, employing the boundary element method. The fault terminates against the interface in a T-shaped configuration, whose segments interact among each other: the lateral extent of the unwelded surface can be computed in terms of the main fault parameters and the stress field resulting in the shallower layer can be modelled. A wide stripe of high and nearly uniform shear stress develops above the unwelded surface, whose width is controlled by the lateral extension of unwelding. Secondary shear fractures may then open within this stripe, according to the Coulomb failure criterion, and the depth of open fractures opening in mixed mode may be computed and compared with the well studied fault complexities observed in the field. In absence of the T-shaped decollement structure, stress concentration above the seismic fault would be difficult to reconcile with observations, being much higher and narrower.
Resumo:
The fall of the Berlin Wall opened the way for a reform path – the transition process – which accompanied ten former Socialist countries in Central and South Eastern Europe to knock at the EU doors. By the way, at the time of the EU membership several economic and structural weaknesses remained. A tendency towards convergence between the new Member States (NMS) and the EU average income level emerged, together with a spread of inequality at the sub-regional level, mainly driven by the backwardness of the agricultural and rural areas. Several progresses were made in evaluating the policies for rural areas, but a shared definition of rurality is still missing. Numerous indicators were calculated for assessing the effectiveness of the Common Agricultural Policy and Rural Development Policy. Previous analysis on the Central and Eastern European countries found that the characteristics of the most backward areas were insufficiently addressed by the policies enacted; the low data availability and accountability at a sub-regional level, and the deficiencies in institutional planning and implementation represented an obstacle for targeting policies and payments. The next pages aim at providing a basis for understanding the connections between the peculiarities of the transition process, the current development performance of NMS and the EU role, with particular attention to the agricultural and rural areas. Applying a mixed methodological approach (multivariate statistics, non-parametric methods, spatial econometrics), this study contributes to the identification of rural areas and to the analysis of the changes occurred during the EU membership in Hungary, assessing the effect of CAP introduction and its contribution to the convergence of the Hungarian agricultural and rural. The author believes that more targeted – and therefore efficient – policies for agricultural and rural areas require a deeper knowledge of their structural and dynamic characteristics.
Resumo:
This Doctoral Thesis unfolds into a collection of three distinct papers that share an interest in institutional theory and technology transfer. Taking into account that organizations are increasingly exposed to a multiplicity of demands and pressures, we aim to analyze what renders this situation of institutional complexity more or less difficult to manage for organizations, and what makes organizations more or less successful in responding to it. The three studies offer a novel contribution both theoretically and empirically. In particular, the first paper “The dimensions of organizational fields for understanding institutional complexity: A theoretical framework” is a theoretical contribution that tries to better understand the relationship between institutional complexity and fields by providing a framework. The second article “Beyond institutional complexity: The case of different organizational successes in confronting multiple institutional logics” is an empirical study which aims to explore the strategies that allow organizations facing multiple logics to respond more successfully to them. The third work “ How external support may mitigate the barriers to university-industry collaboration” is oriented towards practitioners and presents a case study about technology transfer in Italy.
Resumo:
This dissertation contributes to the scholarly debate on temporary teams by exploring team interactions and boundaries.The fundamental challenge in temporary teams originates from temporary participation in the teams. First, as participants join the team for a short period of time, there is not enough time to build trust, share understanding, and have effective interactions. Consequently, team outputs and practices built on team interactions become vulnerable. Secondly, as team participants move on and off the teams, teams’ boundaries become blurred over time. It leads to uncertainty among team participants and leaders about who is/is not identified as a team member causing collective disagreement within the team. Focusing on the above mentioned challenges, we conducted this research in healthcare organisations since the use of temporary teams in healthcare and hospital setting is prevalent. In particular, we focused on orthopaedic teams that provide personalised treatments for patients using 3D printing technology. Qualitative and quantitative data were collected using interviews, observations, questionnaires and archival data at Rizzoli Orthopaedic Institute, Bologna, Italy. This study provides the following research outputs. The first is a conceptual study that explores temporary teams’ literature using bibliometric analysis and systematic literature review to highlight research gaps. The second paper qualitatively studies temporary relationships within the teams by collecting data using group interviews and observations. The results highlighted the role of short-term dyadic relationships as a ground to share and transfer knowledge at the team level. Moreover, hierarchical structure of the teams facilitates knowledge sharing by supporting dyadic relationships within and beyond the team meetings. The third paper investigates impact of blurred boundaries on temporary teams’ performance. Using quantitative data collected through questionnaires and archival data, we concluded that boundary blurring in terms of fluidity, overlap and dispersion differently impacts team performance at high and low levels of task complexity.