6 resultados para Autonomous robotics
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Eukaryotic ribosomal DNA constitutes a multi gene family organized in a cluster called nucleolar organizer region (NOR); this region is composed usually by hundreds to thousands of tandemly repeated units. Ribosomal genes, being repeated sequences, evolve following the typical pattern of concerted evolution. The autonomous retroelement R2 inserts in the ribosomal gene 28S, leading to defective 28S rDNA genes. R2 element, being a retrotransposon, performs its activity in the genome multiplying its copy number through a “copy and paste” mechanism called target primed reverse transcription. It consists in the retrotranscription of the element’s mRNA into DNA, then the DNA is integrated in the target site. Since the retrotranscription can be interrupted, but the integration will be carried out anyway, truncated copies of the element will also be present in the genome. The study of these truncated variants is a tool to examine the activity of the element. R2 phylogeny appears, in general, not consistent with that of its hosts, except some cases (e.g. Drosophila spp. and Reticulitermes spp.); moreover R2 is absent in some species (Fugu rubripes, human, mouse, etc.), while other species have more R2 lineages in their genome (the turtle Mauremys reevesii, the Japanese beetle Popilia japonica, etc). R2 elements here presented are isolated in 4 species of notostracan branchiopods and in two species of stick insects, whose reproductive strategies range from strict gonochorism to unisexuality. From sequencing data emerges that in Triops cancriformis (Spanish gonochoric population), in Lepidurus arcticus (two putatively unisexual populations from Iceland) and in Bacillus rossius (gonochoric population from Capalbio) the R2 elements are complete and encode functional proteins, reflecting the general features of this family of transposable elements. On the other hand, R2 from Italian and Austrian populations of T. cancriformis (respectively unisexual and hermaphroditic), Lepidurus lubbocki (two elements within the same Italian population, gonochoric but with unfunctional males) and Bacillus grandii grandii (gonochoric population from Ponte Manghisi) have sequences that encode incomplete or non-functional proteins in which it is possible to recognize only part of the characteristic domains. In Lepidurus couesii (Italian gonochoric populations) different elements were found as in L. lubbocki, and the sequencing is still in progress. Two hypothesis are given to explain the inconsistency of R2/host phylogeny: vertical inheritance of the element followed by extinction/diversification or horizontal transmission. My data support previous study that state the vertical transmission as the most likely explanation; nevertheless horizontal transfer events can’t be excluded. I also studied the element’s activity in Spanish populations of T. cancriformis, in L. lubbocki, in L. arcticus and in gonochoric and parthenogenetic populations of B. rossius. In gonochoric populations of T. cancriformis and B. rossius I found that each individual has its own private set of truncated variants. The situation is the opposite for the remaining hermaphroditic/parthenogenetic species and populations, all individuals sharing – in the so far analyzed samples - the majority of variants. This situation is very interesting, because it isn’t concordant with the Muller’s ratchet theory that hypothesizes the parthenogenetic populations being either devoided of transposable elements or TEs overloaded. My data suggest a possible epigenetic mechanism that can block the retrotransposon activity, and in this way deleterious mutations don’t accumulate.
Resumo:
This thesis presents some different techniques designed to drive a swarm of robots in an a-priori unknown environment in order to move the group from a starting area to a final one avoiding obstacles. The presented techniques are based on two different theories used alone or in combination: Swarm Intelligence (SI) and Graph Theory. Both theories are based on the study of interactions between different entities (also called agents or units) in Multi- Agent Systems (MAS). The first one belongs to the Artificial Intelligence context and the second one to the Distributed Systems context. These theories, each one from its own point of view, exploit the emergent behaviour that comes from the interactive work of the entities, in order to achieve a common goal. The features of flexibility and adaptability of the swarm have been exploited with the aim to overcome and to minimize difficulties and problems that can affect one or more units of the group, having minimal impact to the whole group and to the common main target. Another aim of this work is to show the importance of the information shared between the units of the group, such as the communication topology, because it helps to maintain the environmental information, detected by each single agent, updated among the swarm. Swarm Intelligence has been applied to the presented technique, through the Particle Swarm Optimization algorithm (PSO), taking advantage of its features as a navigation system. The Graph Theory has been applied by exploiting Consensus and the application of the agreement protocol with the aim to maintain the units in a desired and controlled formation. This approach has been followed in order to conserve the power of PSO and to control part of its random behaviour with a distributed control algorithm like Consensus.
Resumo:
This thesis deals with robust adaptive control and its applications, and it is divided into three main parts. The first part is about the design of robust estimation algorithms based on recursive least squares. First, we present an estimator for the frequencies of biased multi-harmonic signals, and then an algorithm for distributed estimation of an unknown parameter over a network of adaptive agents. In the second part of this thesis, we consider a cooperative control problem over uncertain networks of linear systems and Kuramoto systems, in which the agents have to track the reference generated by a leader exosystem. Since the reference signal is not available to each network node, novel distributed observers are designed so as to reconstruct the reference signal locally for each agent, and therefore decentralizing the problem. In the third and final part of this thesis, we consider robust estimation tasks for mobile robotics applications. In particular, we first consider the problem of slip estimation for agricultural tracked vehicles. Then, we consider a search and rescue application in which we need to drive an unmanned aerial vehicle as close as possible to the unknown (and to be estimated) position of a victim, who is buried under the snow after an avalanche event. In this thesis, robustness is intended as an input-to-state stability property of the proposed identifiers (sometimes referred to as adaptive laws), with respect to additive disturbances, and relative to a steady-state trajectory that is associated with a correct estimation of the unknown parameter to be found.
Resumo:
Nowadays, one of the most ambitious challenges in soft robotics is the development of actuators capable to achieve performance comparable to skeletal muscles. Scientists have been working for decades, inspired by Nature, to mimic both their complex structure and their perfectly balanced features in terms of linear contraction, force-to-weight ratio, scalability and flexibility. The present Thesis, contextualized within the FET open Horizon 2020 project MAGNIFY, aims to develop a new family of innovative flexible actuators in the field of soft-robotics. For the realization of this actuator, a biomimetic approach has been chosen, drawing inspiration from skeletal muscle. Their hierarchical fibrous structure was mimicked employing the electrospinning technique, while the contraction of sarcomeres was designed employing chains of molecular machines, supramolecular systems capable of performing movements useful to execute specific tasks. The first part deals with the design and production of the basic unit of the artificial muscle, the artificial myofibril, consisting in a novel electrospun core-shell nanofiber, with elastomeric shell and electrically conductive core, coupled with a conductive coating, for the realization of which numerous strategies have been investigated. The second part deals instead with the integration of molecular machines (provided by the project partners) inside these artificial myofibrils, preceded by the study of several model molecules, aimed at simulating the presence of these molecular machines during the initial phases of the project. The last part concerns the realization of an electrospun multiscale hierarchical structure, aimed at reproducing the entire muscle morphology and fibrous organization. These research will be joined together in the near future like the pieces of a puzzle, recreating the artificial actuator most similar to biological muscle ever made, composed of millions of artificial myofibrils, electrically activated in which the nano-scale movement of molecular machines will be incrementally amplified to the macro-scale contraction of the artificial muscle.
Resumo:
The industrial context is changing rapidly due to advancements in technology fueled by the Internet and Information Technology. The fourth industrial revolution counts integration, flexibility, and optimization as its fundamental pillars, and, in this context, Human-Robot Collaboration has become a crucial factor for manufacturing sustainability in Europe. Collaborative robots are appealing to many companies due to their low installation and running costs and high degree of flexibility, making them ideal for reshoring production facilities with a short return on investment. The ROSSINI European project aims to implement a true Human-Robot Collaboration by designing, developing, and demonstrating a modular and scalable platform for integrating human-centred robotic technologies in industrial production environments. The project focuses on safety concerns related to introducing a cobot in a shared working area and aims to lay the groundwork for a new working paradigm at the industrial level. The need for a software architecture suitable to the robotic platform employed in one of three use cases selected to deploy and test the new technology was the main trigger of this Thesis. The chosen application consists of the automatic loading and unloading of raw-material reels to an automatic packaging machine through an Autonomous Mobile Robot composed of an Autonomous Guided Vehicle, two collaborative manipulators, and an eye-on-hand vision system for performing tasks in a partially unstructured environment. The results obtained during the ROSSINI use case development were later used in the SENECA project, which addresses the need for robot-driven automatic cleaning of pharmaceutical bins in a very specific industrial context. The inherent versatility of mobile collaborative robots is evident from their deployment in the two projects with few hardware and software adjustments. The positive impact of Human-Robot Collaboration on diverse production lines is a motivation for future investments in research on this increasingly popular field by the industry.
Resumo:
The integration of distributed and ubiquitous intelligence has emerged over the last years as the mainspring of transformative advancements in mobile radio networks. As we approach the era of “mobile for intelligence”, next-generation wireless networks are poised to undergo significant and profound changes. Notably, the overarching challenge that lies ahead is the development and implementation of integrated communication and learning mechanisms that will enable the realization of autonomous mobile radio networks. The ultimate pursuit of eliminating human-in-the-loop constitutes an ambitious challenge, necessitating a meticulous delineation of the fundamental characteristics that artificial intelligence (AI) should possess to effectively achieve this objective. This challenge represents a paradigm shift in the design, deployment, and operation of wireless networks, where conventional, static configurations give way to dynamic, adaptive, and AI-native systems capable of self-optimization, self-sustainment, and learning. This thesis aims to provide a comprehensive exploration of the fundamental principles and practical approaches required to create autonomous mobile radio networks that seamlessly integrate communication and learning components. The first chapter of this thesis introduces the notion of Predictive Quality of Service (PQoS) and adaptive optimization and expands upon the challenge to achieve adaptable, reliable, and robust network performance in dynamic and ever-changing environments. The subsequent chapter delves into the revolutionary role of generative AI in shaping next-generation autonomous networks. This chapter emphasizes achieving trustworthy uncertainty-aware generation processes with the use of approximate Bayesian methods and aims to show how generative AI can improve generalization while reducing data communication costs. Finally, the thesis embarks on the topic of distributed learning over wireless networks. Distributed learning and its declinations, including multi-agent reinforcement learning systems and federated learning, have the potential to meet the scalability demands of modern data-driven applications, enabling efficient and collaborative model training across dynamic scenarios while ensuring data privacy and reducing communication overhead.