2 resultados para Autonomous intelligent cruise control
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This thesis presents some different techniques designed to drive a swarm of robots in an a-priori unknown environment in order to move the group from a starting area to a final one avoiding obstacles. The presented techniques are based on two different theories used alone or in combination: Swarm Intelligence (SI) and Graph Theory. Both theories are based on the study of interactions between different entities (also called agents or units) in Multi- Agent Systems (MAS). The first one belongs to the Artificial Intelligence context and the second one to the Distributed Systems context. These theories, each one from its own point of view, exploit the emergent behaviour that comes from the interactive work of the entities, in order to achieve a common goal. The features of flexibility and adaptability of the swarm have been exploited with the aim to overcome and to minimize difficulties and problems that can affect one or more units of the group, having minimal impact to the whole group and to the common main target. Another aim of this work is to show the importance of the information shared between the units of the group, such as the communication topology, because it helps to maintain the environmental information, detected by each single agent, updated among the swarm. Swarm Intelligence has been applied to the presented technique, through the Particle Swarm Optimization algorithm (PSO), taking advantage of its features as a navigation system. The Graph Theory has been applied by exploiting Consensus and the application of the agreement protocol with the aim to maintain the units in a desired and controlled formation. This approach has been followed in order to conserve the power of PSO and to control part of its random behaviour with a distributed control algorithm like Consensus.
Resumo:
This thesis gathers the work carried out by the author in the last three years of research and it concerns the study and implementation of algorithms to coordinate and control a swarm of mobile robots moving in unknown environments. In particular, the author's attention is focused on two different approaches in order to solve two different problems. The first algorithm considered in this work deals with the possibility of decomposing a main complex task in many simple subtasks by exploiting the decentralized implementation of the so called \emph{Null Space Behavioral} paradigm. This approach to the problem of merging different subtasks with assigned priority is slightly modified in order to handle critical situations that can be detected when robots are moving through an unknown environment. In fact, issues can occur when one or more robots got stuck in local minima: a smart strategy to avoid deadlock situations is provided by the author and the algorithm is validated by simulative analysis. The second problem deals with the use of concepts borrowed from \emph{graph theory} to control a group differential wheel robots by exploiting the Laplacian solution of the consensus problem. Constraints on the swarm communication topology have been introduced by the use of a range and bearing platform developed at the Distributed Intelligent Systems and Algorithms Laboratory (DISAL), EPFL (Lausanne, CH) where part of author's work has been carried out. The control algorithm is validated by demonstration and simulation analysis and, later, is performed by a team of four robots engaged in a formation mission. To conclude, the capabilities of the algorithm based on the local solution of the consensus problem for differential wheel robots are demonstrated with an application scenario, where nine robots are engaged in a hunting task.