7 resultados para Automatic surveillence system
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Questa tesi riguarda l'analisi delle trasmissioni ad ingranaggi e delle ruote dentate in generale, nell'ottica della minimizzazione delle perdite di energia. È stato messo a punto un modello per il calcolo della energia e del calore dissipati in un riduttore, sia ad assi paralleli sia epicicloidale. Tale modello consente di stimare la temperatura di equilibrio dell'olio al variare delle condizioni di funzionamento. Il calcolo termico è ancora poco diffuso nel progetto di riduttori, ma si è visto essere importante soprattutto per riduttori compatti, come i riduttori epicicloidali, per i quali la massima potenza trasmissibile è solitamente determinata proprio da considerazioni termiche. Il modello è stato implementato in un sistema di calcolo automatizzato, che può essere adattato a varie tipologie di riduttore. Tale sistema di calcolo consente, inoltre, di stimare l'energia dissipata in varie condizioni di lubrificazione ed è stato utilizzato per valutare le differenze tra lubrificazione tradizionale in bagno d'olio e lubrificazione a “carter secco” o a “carter umido”. Il modello è stato applicato al caso particolare di un riduttore ad ingranaggi a due stadi: il primo ad assi paralleli ed il secondo epicicloidale. Nell'ambito di un contratto di ricerca tra il DIEM e la Brevini S.p.A. di Reggio Emilia, sono state condotte prove sperimentali su un prototipo di tale riduttore, prove che hanno consentito di tarare il modello proposto [1]. Un ulteriore campo di indagine è stato lo studio dell’energia dissipata per ingranamento tra due ruote dentate utilizzando modelli che prevedano il calcolo di un coefficiente d'attrito variabile lungo il segmento di contatto. I modelli più comuni, al contrario, si basano su un coefficiente di attrito medio, mentre si può constatare che esso varia sensibilmente durante l’ingranamento. In particolare, non trovando in letteratura come varia il rendimento nel caso di ruote corrette, ci si è concentrati sul valore dell'energia dissipata negli ingranaggi al variare dello spostamento del profilo. Questo studio è riportato in [2]. È stata condotta una ricerca sul funzionamento di attuatori lineari vite-madrevite. Si sono studiati i meccanismi che determinano le condizioni di usura dell'accoppiamento vite-madrevite in attuatori lineari, con particolare riferimento agli aspetti termici del fenomeno. Si è visto, infatti, che la temperatura di contatto tra vite e chiocciola è il parametro più critico nel funzionamento di questi attuatori. Mediante una prova sperimentale, è stata trovata una legge che, data pressione, velocità e fattore di servizio, stima la temperatura di esercizio. Di tale legge sperimentale è stata data un'interpretazione sulla base dei modelli teorici noti. Questo studio è stato condotto nell'ambito di un contratto di ricerca tra il DIEM e la Ognibene Meccanica S.r.l. di Bologna ed è pubblicato in [3].
Resumo:
The subject of the present research is related to the field of computer technology applied to support intellectual activities such as text translation, screenwriting and content organization of popular and education courses, especially concerning museum visits. The research has started with the deep analysis of the cognitive process which characterizes a screenwriter while working. This choice has been made because a screenplay is not only an aid to the realization of a show but, more in general, it can be considered as the planning of an education, popular and formative intellectual activity. After this analysis, the research has focused on the specific area of the planning, description and introduction of topics related to the history of science, and in particular, of computer science. To focus on this area it has been fundamental to analyse subjects concerning the didactics of museum visits organization. The aim was to find out the guide lines that a teacher should follow when planning the visit of a museum (virtual museum of the history of computer science). The consequent designing and realisation of an automatic support system for the description and the production of a formative, education and popular multimedia product (for the history of computer science), has been possible thanks to the results achieved through this research. The system obtained is provided by the following features: ·management of multimedia slides (such as texts, video, audio or images) which can be classified on the bases of the topic and of the profile of the user; ·automatic creation of a sequence of multimedia slides which introduce the topic; ·management of the interaction with the user to check and give validity to the product. The most innovative aspect of the present research is represented by the fact that the product is realised on the bases of the profile of the user.
Resumo:
Dysfunction of Autonomic Nervous System (ANS) is a typical feature of chronic heart failure and other cardiovascular disease. As a simple non-invasive technology, heart rate variability (HRV) analysis provides reliable information on autonomic modulation of heart rate. The aim of this thesis was to research and develop automatic methods based on ANS assessment for evaluation of risk in cardiac patients. Several features selection and machine learning algorithms have been combined to achieve the goals. Automatic assessment of disease severity in Congestive Heart Failure (CHF) patients: a completely automatic method, based on long-term HRV was proposed in order to automatically assess the severity of CHF, achieving a sensitivity rate of 93% and a specificity rate of 64% in discriminating severe versus mild patients. Automatic identification of hypertensive patients at high risk of vascular events: a completely automatic system was proposed in order to identify hypertensive patients at higher risk to develop vascular events in the 12 months following the electrocardiographic recordings, achieving a sensitivity rate of 71% and a specificity rate of 86% in identifying high-risk subjects among hypertensive patients. Automatic identification of hypertensive patients with history of fall: it was explored whether an automatic identification of fallers among hypertensive patients based on HRV was feasible. The results obtained in this thesis could have implications both in clinical practice and in clinical research. The system has been designed and developed in order to be clinically feasible. Moreover, since 5-minute ECG recording is inexpensive, easy to assess, and non-invasive, future research will focus on the clinical applicability of the system as a screening tool in non-specialized ambulatories, in order to identify high-risk patients to be shortlisted for more complex investigations.
Resumo:
Process algebraic architectural description languages provide a formal means for modeling software systems and assessing their properties. In order to bridge the gap between system modeling and system im- plementation, in this thesis an approach is proposed for automatically generating multithreaded object-oriented code from process algebraic architectural descriptions, in a way that preserves – under certain assumptions – the properties proved at the architectural level. The approach is divided into three phases, which are illustrated by means of a running example based on an audio processing system. First, we develop an architecture-driven technique for thread coordination management, which is completely automated through a suitable package. Second, we address the translation of the algebraically-specified behavior of the individual software units into thread templates, which will have to be filled in by the software developer according to certain guidelines. Third, we discuss performance issues related to the suitability of synthesizing monitors rather than threads from software unit descriptions that satisfy specific constraints. In addition to the running example, we present two case studies about a video animation repainting system and the implementation of a leader election algorithm, in order to summarize the whole approach. The outcome of this thesis is the implementation of the proposed approach in a translator called PADL2Java and its integration in the architecture-centric verification tool TwoTowers.
Resumo:
This thesis presents and discusses TEDA, an algorithm for the automatic detection in real-time of tsunamis and large amplitude waves on sea level records. TEDA has been developed in the frame of the Tsunami Research Team of the University of Bologna for coastal tide gauges and it has been calibrated and tested for the tide gauge station of Adak Island, in Alaska. A preliminary study to apply TEDA to offshore buoys in the Pacific Ocean is also presented.
Resumo:
The identification of people by measuring some traits of individual anatomy or physiology has led to a specific research area called biometric recognition. This thesis is focused on improving fingerprint recognition systems considering three important problems: fingerprint enhancement, fingerprint orientation extraction and automatic evaluation of fingerprint algorithms. An effective extraction of salient fingerprint features depends on the quality of the input fingerprint. If the fingerprint is very noisy, we are not able to detect a reliable set of features. A new fingerprint enhancement method, which is both iterative and contextual, is proposed. This approach detects high-quality regions in fingerprints, selectively applies contextual filtering and iteratively expands like wildfire toward low-quality ones. A precise estimation of the orientation field would greatly simplify the estimation of other fingerprint features (singular points, minutiae) and improve the performance of a fingerprint recognition system. The fingerprint orientation extraction is improved following two directions. First, after the introduction of a new taxonomy of fingerprint orientation extraction methods, several variants of baseline methods are implemented and, pointing out the role of pre- and post- processing, we show how to improve the extraction. Second, the introduction of a new hybrid orientation extraction method, which follows an adaptive scheme, allows to improve significantly the orientation extraction in noisy fingerprints. Scientific papers typically propose recognition systems that integrate many modules and therefore an automatic evaluation of fingerprint algorithms is needed to isolate the contributions that determine an actual progress in the state-of-the-art. The lack of a publicly available framework to compare fingerprint orientation extraction algorithms, motivates the introduction of a new benchmark area called FOE (including fingerprints and manually-marked orientation ground-truth) along with fingerprint matching benchmarks in the FVC-onGoing framework. The success of such framework is discussed by providing relevant statistics: more than 1450 algorithms submitted and two international competitions.
Resumo:
This thesis proposes design methods and test tools, for optical systems, which may be used in an industrial environment, where not only precision and reliability but also ease of use is important. The approach to the problem has been conceived to be as general as possible, although in the present work, the design of a portable device for automatic identification applications has been studied, because this doctorate has been funded by Datalogic Scanning Group s.r.l., a world-class producer of barcode readers. The main functional components of the complete device are: electro-optical imaging, illumination and pattern generator systems. For what concerns the electro-optical imaging system, a characterization tool and an analysis one has been developed to check if the desired performance of the system has been achieved. Moreover, two design tools for optimizing the imaging system have been implemented. The first optimizes just the core of the system, the optical part, improving its performance ignoring all other contributions and generating a good starting point for the optimization of the whole complex system. The second tool optimizes the system taking into account its behavior with a model as near as possible to reality including optics, electronics and detection. For what concerns the illumination and the pattern generator systems, two tools have been implemented. The first allows the design of free-form lenses described by an arbitrary analytical function exited by an incoherent source and is able to provide custom illumination conditions for all kind of applications. The second tool consists of a new method to design Diffractive Optical Elements excited by a coherent source for large pattern angles using the Iterative Fourier Transform Algorithm. Validation of the design tools has been obtained, whenever possible, comparing the performance of the designed systems with those of fabricated prototypes. In other cases simulations have been used.