13 resultados para Automatic model transformation systems
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This thesis intends to investigate two aspects of Constraint Handling Rules (CHR). It proposes a compositional semantics and a technique for program transformation. CHR is a concurrent committed-choice constraint logic programming language consisting of guarded rules, which transform multi-sets of atomic formulas (constraints) into simpler ones until exhaustion [Frü06] and it belongs to the declarative languages family. It was initially designed for writing constraint solvers but it has recently also proven to be a general purpose language, being as it is Turing equivalent [SSD05a]. Compositionality is the first CHR aspect to be considered. A trace based compositional semantics for CHR was previously defined in [DGM05]. The reference operational semantics for such a compositional model was the original operational semantics for CHR which, due to the propagation rule, admits trivial non-termination. In this thesis we extend the work of [DGM05] by introducing a more refined trace based compositional semantics which also includes the history. The use of history is a well-known technique in CHR which permits us to trace the application of propagation rules and consequently it permits trivial non-termination avoidance [Abd97, DSGdlBH04]. Naturally, the reference operational semantics, of our new compositional one, uses history to avoid trivial non-termination too. Program transformation is the second CHR aspect to be considered, with particular regard to the unfolding technique. Said technique is an appealing approach which allows us to optimize a given program and in more detail to improve run-time efficiency or spaceconsumption. Essentially it consists of a sequence of syntactic program manipulations which preserve a kind of semantic equivalence called qualified answer [Frü98], between the original program and the transformed ones. The unfolding technique is one of the basic operations which is used by most program transformation systems. It consists in the replacement of a procedure-call by its definition. In CHR every conjunction of constraints can be considered as a procedure-call, every CHR rule can be considered as a procedure and the body of said rule represents the definition of the call. While there is a large body of literature on transformation and unfolding of sequential programs, very few papers have addressed this issue for concurrent languages. We define an unfolding rule, show its correctness and discuss some conditions in which it can be used to delete an unfolded rule while preserving the meaning of the original program. Finally, confluence and termination maintenance between the original and transformed programs are shown. This thesis is organized in the following manner. Chapter 1 gives some general notion about CHR. Section 1.1 outlines the history of programming languages with particular attention to CHR and related languages. Then, Section 1.2 introduces CHR using examples. Section 1.3 gives some preliminaries which will be used during the thesis. Subsequentely, Section 1.4 introduces the syntax and the operational and declarative semantics for the first CHR language proposed. Finally, the methodologies to solve the problem of trivial non-termination related to propagation rules are discussed in Section 1.5. Chapter 2 introduces a compositional semantics for CHR where the propagation rules are considered. In particular, Section 2.1 contains the definition of the semantics. Hence, Section 2.2 presents the compositionality results. Afterwards Section 2.3 expounds upon the correctness results. Chapter 3 presents a particular program transformation known as unfolding. This transformation needs a particular syntax called annotated which is introduced in Section 3.1 and its related modified operational semantics !0t is presented in Section 3.2. Subsequently, Section 3.3 defines the unfolding rule and prove its correctness. Then, in Section 3.4 the problems related to the replacement of a rule by its unfolded version are discussed and this in turn gives a correctness condition which holds for a specific class of rules. Section 3.5 proves that confluence and termination are preserved by the program modifications introduced. Finally, Chapter 4 concludes by discussing related works and directions for future work.
Resumo:
This thesis proposes design methods and test tools, for optical systems, which may be used in an industrial environment, where not only precision and reliability but also ease of use is important. The approach to the problem has been conceived to be as general as possible, although in the present work, the design of a portable device for automatic identification applications has been studied, because this doctorate has been funded by Datalogic Scanning Group s.r.l., a world-class producer of barcode readers. The main functional components of the complete device are: electro-optical imaging, illumination and pattern generator systems. For what concerns the electro-optical imaging system, a characterization tool and an analysis one has been developed to check if the desired performance of the system has been achieved. Moreover, two design tools for optimizing the imaging system have been implemented. The first optimizes just the core of the system, the optical part, improving its performance ignoring all other contributions and generating a good starting point for the optimization of the whole complex system. The second tool optimizes the system taking into account its behavior with a model as near as possible to reality including optics, electronics and detection. For what concerns the illumination and the pattern generator systems, two tools have been implemented. The first allows the design of free-form lenses described by an arbitrary analytical function exited by an incoherent source and is able to provide custom illumination conditions for all kind of applications. The second tool consists of a new method to design Diffractive Optical Elements excited by a coherent source for large pattern angles using the Iterative Fourier Transform Algorithm. Validation of the design tools has been obtained, whenever possible, comparing the performance of the designed systems with those of fabricated prototypes. In other cases simulations have been used.
Resumo:
The use of tendons for the transmission of the forces and the movements in robotic devices has been investigated from several researchers all over the world. The interest in this kind of actuation modality is based on the possibility of optimizing the position of the actuators with respect to the moving part of the robot, in the reduced weight, high reliability, simplicity in the mechanic design and, finally, in the reduced cost of the resulting kinematic chain. After a brief discussion about the benefits that the use of tendons can introduce in the motion control of a robotic device, the design and control aspects of the UB Hand 3 anthropomorphic robotic hand are presented. In particular, the tendon-sheaths transmission system adopted in the UB Hand 3 is analyzed and the problem of force control and friction compensation is taken into account. The implementation of a tendon based antagonistic actuated robotic arm is then investigated. With this kind of actuation modality, and by using transmission elements with nonlinear force/compression characteristic, it is possible to achieve simultaneous stiffness and position control, improving in this way the safety of the device during the operation in unknown environments and in the case of interaction with other robots or with humans. The problem of modeling and control of this type of robotic devices is then considered and the stability analysis of proposed controller is reported. At the end, some tools for the realtime simulation of dynamic systems are presented. This realtime simulation environment has been developed with the aim of improving the reliability of the realtime control applications both for rapid prototyping of controllers and as teaching tools for the automatic control courses.
Resumo:
This thesis describes modelling tools and methods suited for complex systems (systems that typically are represented by a plurality of models). The basic idea is that all models representing the system should be linked by well-defined model operations in order to build a structured repository of information, a hierarchy of models. The port-Hamiltonian framework is a good candidate to solve this kind of problems as it supports the most important model operations natively. The thesis in particular addresses the problem of integrating distributed parameter systems in a model hierarchy, and shows two possible mechanisms to do that: a finite-element discretization in port-Hamiltonian form, and a structure-preserving model order reduction for discretized models obtainable from commercial finite-element packages.
Resumo:
The presented study carried out an analysis on rural landscape changes. In particular the study focuses on the understanding of driving forces acting on the rural built environment using a statistical spatial model implemented through GIS techniques. It is well known that the study of landscape changes is essential for a conscious decision making in land planning. From a bibliography review results a general lack of studies dealing with the modeling of rural built environment and hence a theoretical modelling approach for such purpose is needed. The advancement in technology and modernity in building construction and agriculture have gradually changed the rural built environment. In addition, the phenomenon of urbanization of a determined the construction of new volumes that occurred beside abandoned or derelict rural buildings. Consequently there are two types of transformation dynamics affecting mainly the rural built environment that can be observed: the conversion of rural buildings and the increasing of building numbers. It is the specific aim of the presented study to propose a methodology for the development of a spatial model that allows the identification of driving forces that acted on the behaviours of the building allocation. In fact one of the most concerning dynamic nowadays is related to an irrational expansion of buildings sprawl across landscape. The proposed methodology is composed by some conceptual steps that cover different aspects related to the development of a spatial model: the selection of a response variable that better describe the phenomenon under study, the identification of possible driving forces, the sampling methodology concerning the collection of data, the most suitable algorithm to be adopted in relation to statistical theory and method used, the calibration process and evaluation of the model. A different combination of factors in various parts of the territory generated favourable or less favourable conditions for the building allocation and the existence of buildings represents the evidence of such optimum. Conversely the absence of buildings expresses a combination of agents which is not suitable for building allocation. Presence or absence of buildings can be adopted as indicators of such driving conditions, since they represent the expression of the action of driving forces in the land suitability sorting process. The existence of correlation between site selection and hypothetical driving forces, evaluated by means of modeling techniques, provides an evidence of which driving forces are involved in the allocation dynamic and an insight on their level of influence into the process. GIS software by means of spatial analysis tools allows to associate the concept of presence and absence with point futures generating a point process. Presence or absence of buildings at some site locations represent the expression of these driving factors interaction. In case of presences, points represent locations of real existing buildings, conversely absences represent locations were buildings are not existent and so they are generated by a stochastic mechanism. Possible driving forces are selected and the existence of a causal relationship with building allocations is assessed through a spatial model. The adoption of empirical statistical models provides a mechanism for the explanatory variable analysis and for the identification of key driving variables behind the site selection process for new building allocation. The model developed by following the methodology is applied to a case study to test the validity of the methodology. In particular the study area for the testing of the methodology is represented by the New District of Imola characterized by a prevailing agricultural production vocation and were transformation dynamic intensively occurred. The development of the model involved the identification of predictive variables (related to geomorphologic, socio-economic, structural and infrastructural systems of landscape) capable of representing the driving forces responsible for landscape changes.. The calibration of the model is carried out referring to spatial data regarding the periurban and rural area of the study area within the 1975-2005 time period by means of Generalised linear model. The resulting output from the model fit is continuous grid surface where cells assume values ranged from 0 to 1 of probability of building occurrences along the rural and periurban area of the study area. Hence the response variable assesses the changes in the rural built environment occurred in such time interval and is correlated to the selected explanatory variables by means of a generalized linear model using logistic regression. Comparing the probability map obtained from the model to the actual rural building distribution in 2005, the interpretation capability of the model can be evaluated. The proposed model can be also applied to the interpretation of trends which occurred in other study areas, and also referring to different time intervals, depending on the availability of data. The use of suitable data in terms of time, information, and spatial resolution and the costs related to data acquisition, pre-processing, and survey are among the most critical aspects of model implementation. Future in-depth studies can focus on using the proposed model to predict short/medium-range future scenarios for the rural built environment distribution in the study area. In order to predict future scenarios it is necessary to assume that the driving forces do not change and that their levels of influence within the model are not far from those assessed for the time interval used for the calibration.
Resumo:
Many research fields are pushing the engineering of large-scale, mobile, and open systems towards the adoption of techniques inspired by self-organisation: pervasive computing, but also distributed artificial intelligence, multi-agent systems, social networks, peer-topeer and grid architectures exploit adaptive techniques to make global system properties emerge in spite of the unpredictability of interactions and behaviour. Such a trend is visible also in coordination models and languages, whenever a coordination infrastructure needs to cope with managing interactions in highly dynamic and unpredictable environments. As a consequence, self-organisation can be regarded as a feasible metaphor to define a radically new conceptual coordination framework. The resulting framework defines a novel coordination paradigm, called self-organising coordination, based on the idea of spreading coordination media over the network, and charge them with services to manage interactions based on local criteria, resulting in the emergence of desired and fruitful global coordination properties of the system. Features like topology, locality, time-reactiveness, and stochastic behaviour play a key role in both the definition of such a conceptual framework and the consequent development of self-organising coordination services. According to this framework, the thesis presents several self-organising coordination techniques developed during the PhD course, mainly concerning data distribution in tuplespace-based coordination systems. Some of these techniques have been also implemented in ReSpecT, a coordination language for tuple spaces, based on logic tuples and reactions to events occurring in a tuple space. In addition, the key role played by simulation and formal verification has been investigated, leading to analysing how automatic verification techniques like probabilistic model checking can be exploited in order to formally prove the emergence of desired behaviours when dealing with coordination approaches based on self-organisation. To this end, a concrete case study is presented and discussed.
Resumo:
In the present study we analyzed new neuroprotective therapeutical strategies in PD (Parkinson’s disease) and AD (Alzheimer’s disease). Current therapeutic strategies for treating PD and AD offer mainly transient symptomatic relief but it is still impossible to block the loss of neuron and then the progression of PD and AD. There is considerable consensus that the increased production and/or aggregation of α- synuclein (α-syn) and β-amyloid peptide (Aβ), plays a central role in the pathogenesis of PD, related synucleinopathies and AD. Therefore, we identified antiamyloidogenic compounds and we tested their effect as neuroprotective drug-like molecules against α-syn and β-amyloid cytotoxicity in PC12. Herein, we show that two nitro-catechol compounds (entacapone and tolcapone) and 5 cathecol-containing compounds (dopamine, pyrogallol, gallic acid, caffeic acid and quercetin) with antioxidant and anti-inflammatory properties, are potent inhibitors of α-syn and β-amyloid oligomerization and fibrillization. Subsequently, we show that the inhibition of α-syn and β-amyloid oligomerization and fibrillization is correlated with the neuroprotection of these compounds against the α-syn and β-amyloid-induced cytotoxicity in PC12. Finally, we focused on the study of the neuroprotective role of microglia and on the possibility that the neuroprotection properties of these cells could be use as therapeutical strategy in PD and AD. Here, we have used an in vitro model to demonstrate neuroprotection of a 48 h-microglial conditioned medium (MCM) towards cerebellar granule neurons (CGNs) challenged with the neurotoxin 6-hydroxydopamine (6-OHDA), which induces a Parkinson-like neurodegeneration, with Aβ42, which induces a Alzheimer-like neurodegeneration, and glutamate, involved in the major neurodegenerative diseases. We show that MCM nearly completely protects CGNs from 6-OHDA neurotoxicity, partially from glutamate excitotoxicity but not from Aβ42 toxin.
Resumo:
Constraints are widely present in the flight control problems: actuators saturations or flight envelope limitations are only some examples of that. The ability of Model Predictive Control (MPC) of dealing with the constraints joined with the increased computational power of modern calculators makes this approach attractive also for fast dynamics systems such as agile air vehicles. This PhD thesis presents the results, achieved at the Aerospace Engineering Department of the University of Bologna in collaboration with the Dutch National Aerospace Laboratories (NLR), concerning the development of a model predictive control system for small scale rotorcraft UAS. Several different predictive architectures have been evaluated and tested by means of simulation, as a result of this analysis the most promising one has been used to implement three different control systems: a Stability and Control Augmentation System, a trajectory tracking and a path following system. The systems have been compared with a corresponding baseline controller and showed several advantages in terms of performance, stability and robustness.
Resumo:
A control-oriented model of a Dual Clutch Transmission was developed for real-time Hardware In the Loop (HIL) applications, to support model-based development of the DCT controller. The model is an innovative attempt to reproduce the fast dynamics of the actuation system while maintaining a step size large enough for real-time applications. The model comprehends a detailed physical description of hydraulic circuit, clutches, synchronizers and gears, and simplified vehicle and internal combustion engine sub-models. As the oil circulating in the system has a large bulk modulus, the pressure dynamics are very fast, possibly causing instability in a real-time simulation; the same challenge involves the servo valves dynamics, due to the very small masses of the moving elements. Therefore, the hydraulic circuit model has been modified and simplified without losing physical validity, in order to adapt it to the real-time simulation requirements. The results of offline simulations have been compared to on-board measurements to verify the validity of the developed model, that was then implemented in a HIL system and connected to the TCU (Transmission Control Unit). Several tests have been performed: electrical failure tests on sensors and actuators, hydraulic and mechanical failure tests on hydraulic valves, clutches and synchronizers, and application tests comprehending all the main features of the control performed by the TCU. Being based on physical laws, in every condition the model simulates a plausible reaction of the system. The first intensive use of the HIL application led to the validation of the new safety strategies implemented inside the TCU software. A test automation procedure has been developed to permit the execution of a pattern of tests without the interaction of the user; fully repeatable tests can be performed for non-regression verification, allowing the testing of new software releases in fully automatic mode.
Resumo:
MultiProcessor Systems-on-Chip (MPSoC) are the core of nowadays and next generation computing platforms. Their relevance in the global market continuously increase, occupying an important role both in everydaylife products (e.g. smartphones, tablets, laptops, cars) and in strategical market sectors as aviation, defense, robotics, medicine. Despite of the incredible performance improvements in the recent years processors manufacturers have had to deal with issues, commonly called “Walls”, that have hindered the processors development. After the famous “Power Wall”, that limited the maximum frequency of a single core and marked the birth of the modern multiprocessors system-on-chip, the “Thermal Wall” and the “Utilization Wall” are the actual key limiter for performance improvements. The former concerns the damaging effects of the high temperature on the chip caused by the large power densities dissipation, whereas the second refers to the impossibility of fully exploiting the computing power of the processor due to the limitations on power and temperature budgets. In this thesis we faced these challenges by developing efficient and reliable solutions able to maximize performance while limiting the maximum temperature below a fixed critical threshold and saving energy. This has been possible by exploiting the Model Predictive Controller (MPC) paradigm that solves an optimization problem subject to constraints in order to find the optimal control decisions for the future interval. A fully-distributedMPC-based thermal controller with a far lower complexity respect to a centralized one has been developed. The control feasibility and interesting properties for the simplification of the control design has been proved by studying a partial differential equation thermal model. Finally, the controller has been efficiently included in more complex control schemes able to minimize energy consumption and deal with mixed-criticalities tasks
Resumo:
In distributed systems like clouds or service oriented frameworks, applications are typically assembled by deploying and connecting a large number of heterogeneous software components, spanning from fine-grained packages to coarse-grained complex services. The complexity of such systems requires a rich set of techniques and tools to support the automation of their deployment process. By relying on a formal model of components, a technique is devised for computing the sequence of actions allowing the deployment of a desired configuration. An efficient algorithm, working in polynomial time, is described and proven to be sound and complete. Finally, a prototype tool implementing the proposed algorithm has been developed. Experimental results support the adoption of this novel approach in real life scenarios.
Resumo:
Electronic nicotine delivery systems (ENDS) use has recently grown. E-cig generates carcinogenic chemical compounds and reactive oxygen species (ROS). Carbonyls and ROS are formed when the liquid comes into contact with the heating element. In this study the chemical and biological effects of coil resistance applied on the same device were investigated. A preliminary in-vivo study the new heat-not-burn devices (IQOS®) has been conducted to evaluate the effect of the device on antioxidant biomarkers. The amount of formaldehyde, acetaldehyde, acrolein was measured by GC-MS analysis. The two e-liquids used for carbonyls detection differed only for the presence of nicotine. The nicotine-free liquid was then used for the detection of ROS in the aerosol. The impact of the non-nicotine vapor on cell viability in H1299 human lung carcinoma cells, as well as the biological effects in a rat model of e-cig aerosol exposure, were also evaluated. After the exposure of Sprague Dawley rats to e-cig and IQOS® aerosol, the effect of 28-day treatment was examined on enzymatic and non-enzymatic antioxidant response, lung inflammation, blood homeostasis and tissue damage by using scanning electron microscope (SEM) technique. The results show a significant correlation between the low resistance and the generation of higher concentrations of the selected carbonyls and ROS in aerosols. Cell viability was reduced with an inverse relation to coil resistance. The experimental model highlighted an impairment of the pulmonary antioxidant and detoxifying machinery. Frames from SEM show disorganization of alveolar and bronchial epithelium. IQOS® exposed animals shows a significant production of ROS related to the unbalance of antioxidant defense and alteration of macromolecule integrity. This research demonstrates how several toxicological aspects can potentially occur in e-cig consumers who use low resistance device coupled with nicotine-free liquid. ENDS may expose users to hazardous compounds, which, may promote chronic pathologies and degenerative diseases.
Resumo:
In highly urbanized coastal lowlands, effective site characterization is crucial for assessing seismic risk. It requires a comprehensive stratigraphic analysis of the shallow subsurface, coupled with the precise assessment of the geophysical properties of buried deposits. In this context, late Quaternary paleovalley systems, shallowly buried fluvial incisions formed during the Late Pleistocene sea-level fall and filled during the Holocene sea-level rise, are crucial for understanding seismic amplification due to their soft sediment infill and sharp lithologic contrasts. In this research, we conducted high-resolution stratigraphic analyses of two regions, the Pescara and Manfredonia areas along the Adriatic coastline of Italy, to delineate the geometries and facies architecture of two paleovalley systems. Furthermore, we carried out geophysical investigations to characterize the study areas and perform seismic response analyses. We tested the microtremor-based horizontal-to-vertical spectral ratio as a mapping tool to reconstruct the buried paleovalley geometries. We evaluated the relationship between geological and geophysical data and identified the stratigraphic surfaces responsible for the observed resonances. To perform seismic response analysis of the Pescara paleovalley system, we integrated the stratigraphic framework with microtremor and shear wave velocity measurements. The seismic response analysis highlights strong seismic amplifications in frequency ranges that can interact with a wide variety of building types. Additionally, we explored the applicability of artificial intelligence in performing facies analysis from borehole images. We used a robust dataset of high-resolution digital images from continuous sediment cores of Holocene age to outline a novel, deep-learning-based approach for performing automatic semantic segmentation directly on core images, leveraging the power of convolutional neural networks. We propose an automated model to rapidly characterize sediment cores, reproducing the sedimentologist's interpretation, and providing guidance for stratigraphic correlation and subsurface reconstructions.