4 resultados para Automatic detection
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This thesis presents and discusses TEDA, an algorithm for the automatic detection in real-time of tsunamis and large amplitude waves on sea level records. TEDA has been developed in the frame of the Tsunami Research Team of the University of Bologna for coastal tide gauges and it has been calibrated and tested for the tide gauge station of Adak Island, in Alaska. A preliminary study to apply TEDA to offshore buoys in the Pacific Ocean is also presented.
Resumo:
This thesis proposes design methods and test tools, for optical systems, which may be used in an industrial environment, where not only precision and reliability but also ease of use is important. The approach to the problem has been conceived to be as general as possible, although in the present work, the design of a portable device for automatic identification applications has been studied, because this doctorate has been funded by Datalogic Scanning Group s.r.l., a world-class producer of barcode readers. The main functional components of the complete device are: electro-optical imaging, illumination and pattern generator systems. For what concerns the electro-optical imaging system, a characterization tool and an analysis one has been developed to check if the desired performance of the system has been achieved. Moreover, two design tools for optimizing the imaging system have been implemented. The first optimizes just the core of the system, the optical part, improving its performance ignoring all other contributions and generating a good starting point for the optimization of the whole complex system. The second tool optimizes the system taking into account its behavior with a model as near as possible to reality including optics, electronics and detection. For what concerns the illumination and the pattern generator systems, two tools have been implemented. The first allows the design of free-form lenses described by an arbitrary analytical function exited by an incoherent source and is able to provide custom illumination conditions for all kind of applications. The second tool consists of a new method to design Diffractive Optical Elements excited by a coherent source for large pattern angles using the Iterative Fourier Transform Algorithm. Validation of the design tools has been obtained, whenever possible, comparing the performance of the designed systems with those of fabricated prototypes. In other cases simulations have been used.
From fall-risk assessment to fall detection: inertial sensors in the clinical routine and daily life
Resumo:
Falls are caused by complex interaction between multiple risk factors which may be modified by age, disease and environment. A variety of methods and tools for fall risk assessment have been proposed, but none of which is universally accepted. Existing tools are generally not capable of providing a quantitative predictive assessment of fall risk. The need for objective, cost-effective and clinically applicable methods would enable quantitative assessment of fall risk on a subject-specific basis. Tracking objectively falls risk could provide timely feedback about the effectiveness of administered interventions enabling intervention strategies to be modified or changed if found to be ineffective. Moreover, some of the fundamental factors leading to falls and what actually happens during a fall remain unclear. Objectively documented and measured falls are needed to improve knowledge of fall in order to develop more effective prevention strategies and prolong independent living. In the last decade, several research groups have developed sensor-based automatic or semi-automatic fall risk assessment tools using wearable inertial sensors. This approach may also serve to detect falls. At the moment, i) several fall-risk assessment studies based on inertial sensors, even if promising, lack of a biomechanical model-based approach which could provide accurate and more detailed measurements of interests (e.g., joint moments, forces) and ii) the number of published real-world fall data of older people in a real-world environment is minimal since most authors have used simulations with healthy volunteers as a surrogate for real-world falls. With these limitations in mind, this thesis aims i) to suggest a novel method for the kinematics and dynamics evaluation of functional motor tasks, often used in clinics for the fall-risk evaluation, through a body sensor network and a biomechanical approach and ii) to define the guidelines for a fall detection algorithm based on a real-world fall database availability.
Resumo:
Autism Spectrum Disorders (ASDs) describe a set of neurodevelopmental disorders. ASD represents a significant public health problem. Currently, ASDs are not diagnosed before the 2nd year of life but an early identification of ASDs would be crucial as interventions are much more effective than specific therapies starting in later childhood. To this aim, cheap an contact-less automatic approaches recently aroused great clinical interest. Among them, the cry and the movements of the newborn, both involving the central nervous system, are proposed as possible indicators of neurological disorders. This PhD work is a first step towards solving this challenging problem. An integrated system is presented enabling the recording of audio (crying) and video (movements) data of the newborn, their automatic analysis with innovative techniques for the extraction of clinically relevant parameters and their classification with data mining techniques. New robust algorithms were developed for the selection of the voiced parts of the cry signal, the estimation of acoustic parameters based on the wavelet transform and the analysis of the infant’s general movements (GMs) through a new body model for segmentation and 2D reconstruction. In addition to a thorough literature review this thesis presents the state of the art on these topics that shows that no studies exist concerning normative ranges for newborn infant cry in the first 6 months of life nor the correlation between cry and movements. Through the new automatic methods a population of control infants (“low-risk”, LR) was compared to a group of “high-risk” (HR) infants, i.e. siblings of children already diagnosed with ASD. A subset of LR infants clinically diagnosed as newborns with Typical Development (TD) and one affected by ASD were compared. The results show that the selected acoustic parameters allow good differentiation between the two groups. This result provides new perspectives both diagnostic and therapeutic.