7 resultados para Automated Reasoning
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The dynamicity and heterogeneity that characterize pervasive environments raise new challenges in the design of mobile middleware. Pervasive environments are characterized by a significant degree of heterogeneity, variability, and dynamicity that conventional middleware solutions are not able to adequately manage. Originally designed for use in a relatively static context, such middleware systems tend to hide low-level details to provide applications with a transparent view on the underlying execution platform. In mobile environments, however, the context is extremely dynamic and cannot be managed by a priori assumptions. Novel middleware should therefore support mobile computing applications in the task of adapting their behavior to frequent changes in the execution context, that is, it should become context-aware. In particular, this thesis has identified the following key requirements for novel context-aware middleware that existing solutions do not fulfil yet. (i) Middleware solutions should support interoperability between possibly unknown entities by providing expressive representation models that allow to describe interacting entities, their operating conditions and the surrounding world, i.e., their context, according to an unambiguous semantics. (ii) Middleware solutions should support distributed applications in the task of reconfiguring and adapting their behavior/results to ongoing context changes. (iii) Context-aware middleware support should be deployed on heterogeneous devices under variable operating conditions, such as different user needs, application requirements, available connectivity and device computational capabilities, as well as changing environmental conditions. Our main claim is that the adoption of semantic metadata to represent context information and context-dependent adaptation strategies allows to build context-aware middleware suitable for all dynamically available portable devices. Semantic metadata provide powerful knowledge representation means to model even complex context information, and allow to perform automated reasoning to infer additional and/or more complex knowledge from available context data. In addition, we suggest that, by adopting proper configuration and deployment strategies, semantic support features can be provided to differentiated users and devices according to their specific needs and current context. This thesis has investigated novel design guidelines and implementation options for semantic-based context-aware middleware solutions targeted to pervasive environments. These guidelines have been applied to different application areas within pervasive computing that would particularly benefit from the exploitation of context. Common to all applications is the key role of context in enabling mobile users to personalize applications based on their needs and current situation. The main contributions of this thesis are (i) the definition of a metadata model to represent and reason about context, (ii) the definition of a model for the design and development of context-aware middleware based on semantic metadata, (iii) the design of three novel middleware architectures and the development of a prototypal implementation for each of these architectures, and (iv) the proposal of a viable approach to portability issues raised by the adoption of semantic support services in pervasive applications.
Resumo:
Preferences are present in many real life situations but it is often difficult to quantify them giving a precise value. Sometimes preference values may be missing because of privacy reasons or because they are expensive to obtain or to produce. In some other situations the user of an automated system may have a vague idea of whats he wants. In this thesis we considered the general formalism of soft constraints, where preferences play a crucial role and we extended such a framework to handle both incomplete and imprecise preferences. In particular we provided new theoretical frameworks to handle such kinds of preferences. By admitting missing or imprecise preferences, solving a soft constraint problem becomes a different task. In fact, the new goal is to find solutions which are the best ones independently of the precise value the each preference may have. With this in mind we defined two notions of optimality: the possibly optimal solutions and the necessary optimal solutions, which are optimal no matter we assign a precise value to a missing or imprecise preference. We provided several algorithms, bases on both systematic and local search approaches, to find such kind of solutions. Moreover, we also studied the impact of our techniques also in a specific class of problems (the stable marriage problems) where imprecision and incompleteness have a specific meaning and up to now have been tackled with different techniques. In the context of the classical stable marriage problem we developed a fair method to randomly generate stable marriages of a given problem instance. Furthermore, we adapted our techniques to solve stable marriage problems with ties and incomplete lists, which are known to be NP-hard, obtaining good results both in terms of size of the returned marriage and in terms of steps need to find a solution.
Resumo:
Myocardial perfusion quantification by means of Contrast-Enhanced Cardiac Magnetic Resonance images relies on time consuming frame-by-frame manual tracing of regions of interest. In this Thesis, a novel automated technique for myocardial segmentation and non-rigid registration as a basis for perfusion quantification is presented. The proposed technique is based on three steps: reference frame selection, myocardial segmentation and non-rigid registration. In the first step, the reference frame in which both endo- and epicardial segmentation will be performed is chosen. Endocardial segmentation is achieved by means of a statistical region-based level-set technique followed by a curvature-based regularization motion. Epicardial segmentation is achieved by means of an edge-based level-set technique followed again by a regularization motion. To take into account the changes in position, size and shape of myocardium throughout the sequence due to out of plane respiratory motion, a non-rigid registration algorithm is required. The proposed non-rigid registration scheme consists in a novel multiscale extension of the normalized cross-correlation algorithm in combination with level-set methods. The myocardium is then divided into standard segments. Contrast enhancement curves are computed measuring the mean pixel intensity of each segment over time, and perfusion indices are extracted from each curve. The overall approach has been tested on synthetic and real datasets. For validation purposes, the sequences have been manually traced by an experienced interpreter, and contrast enhancement curves as well as perfusion indices have been computed. Comparisons between automatically extracted and manually obtained contours and enhancement curves showed high inter-technique agreement. Comparisons of perfusion indices computed using both approaches against quantitative coronary angiography and visual interpretation demonstrated that the two technique have similar diagnostic accuracy. In conclusion, the proposed technique allows fast, automated and accurate measurement of intra-myocardial contrast dynamics, and may thus address the strong clinical need for quantitative evaluation of myocardial perfusion.
Resumo:
A first phase of the research activity has been related to the study of the state of art of the infrastructures for cycling, bicycle use and methods for evaluation. In this part, the candidate has studied the "bicycle system" in countries with high bicycle use and in particular in the Netherlands. Has been carried out an evaluation of the questionnaires of the survey conducted within the European project BICY on mobility in general in 13 cities of the participating countries. The questionnaire was designed, tested and implemented, and was later validated by a test in Bologna. The results were corrected with information on demographic situation and compared with official data. The cycling infrastructure analysis was conducted on the basis of information from the OpenStreetMap database. The activity consisted in programming algorithms in Python that allow to extract data from the database infrastructure for a region, to sort and filter cycling infrastructure calculating some attributes, such as the length of the arcs paths. The results obtained were compared with official data where available. The structure of the thesis is as follows: 1. Introduction: description of the state of cycling in several advanced countries, description of methods of analysis and their importance to implement appropriate policies for cycling. Supply and demand of bicycle infrastructures. 2. Survey on mobility: it gives details of the investigation developed and the method of evaluation. The results obtained are presented and compared with official data. 3. Analysis cycling infrastructure based on information from the database of OpenStreetMap: describes the methods and algorithms developed during the PhD. The results obtained by the algorithms are compared with official data. 4. Discussion: The above results are discussed and compared. In particular the cycle demand is compared with the length of cycle networks within a city. 5. Conclusions
Resumo:
The main goal of this thesis is to facilitate the process of industrial automated systems development applying formal methods to ensure the reliability of systems. A new formulation of distributed diagnosability problem in terms of Discrete Event Systems theory and automata framework is presented, which is then used to enforce the desired property of the system, rather then just verifying it. This approach tackles the state explosion problem with modeling patterns and new algorithms, aimed for verification of diagnosability property in the context of the distributed diagnosability problem. The concepts are validated with a newly developed software tool.