4 resultados para Astronomical Data Bases : Miscellaneous

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The vast majority of known proteins have not yet been experimentally characterized and little is known about their function. The design and implementation of computational tools can provide insight into the function of proteins based on their sequence, their structure, their evolutionary history and their association with other proteins. Knowledge of the three-dimensional (3D) structure of a protein can lead to a deep understanding of its mode of action and interaction, but currently the structures of <1% of sequences have been experimentally solved. For this reason, it became urgent to develop new methods that are able to computationally extract relevant information from protein sequence and structure. The starting point of my work has been the study of the properties of contacts between protein residues, since they constrain protein folding and characterize different protein structures. Prediction of residue contacts in proteins is an interesting problem whose solution may be useful in protein folding recognition and de novo design. The prediction of these contacts requires the study of the protein inter-residue distances related to the specific type of amino acid pair that are encoded in the so-called contact map. An interesting new way of analyzing those structures came out when network studies were introduced, with pivotal papers demonstrating that protein contact networks also exhibit small-world behavior. In order to highlight constraints for the prediction of protein contact maps and for applications in the field of protein structure prediction and/or reconstruction from experimentally determined contact maps, I studied to which extent the characteristic path length and clustering coefficient of the protein contacts network are values that reveal characteristic features of protein contact maps. Provided that residue contacts are known for a protein sequence, the major features of its 3D structure could be deduced by combining this knowledge with correctly predicted motifs of secondary structure. In the second part of my work I focused on a particular protein structural motif, the coiled-coil, known to mediate a variety of fundamental biological interactions. Coiled-coils are found in a variety of structural forms and in a wide range of proteins including, for example, small units such as leucine zippers that drive the dimerization of many transcription factors or more complex structures such as the family of viral proteins responsible for virus-host membrane fusion. The coiled-coil structural motif is estimated to account for 5-10% of the protein sequences in the various genomes. Given their biological importance, in my work I introduced a Hidden Markov Model (HMM) that exploits the evolutionary information derived from multiple sequence alignments, to predict coiled-coil regions and to discriminate coiled-coil sequences. The results indicate that the new HMM outperforms all the existing programs and can be adopted for the coiled-coil prediction and for large-scale genome annotation. Genome annotation is a key issue in modern computational biology, being the starting point towards the understanding of the complex processes involved in biological networks. The rapid growth in the number of protein sequences and structures available poses new fundamental problems that still deserve an interpretation. Nevertheless, these data are at the basis of the design of new strategies for tackling problems such as the prediction of protein structure and function. Experimental determination of the functions of all these proteins would be a hugely time-consuming and costly task and, in most instances, has not been carried out. As an example, currently, approximately only 20% of annotated proteins in the Homo sapiens genome have been experimentally characterized. A commonly adopted procedure for annotating protein sequences relies on the "inheritance through homology" based on the notion that similar sequences share similar functions and structures. This procedure consists in the assignment of sequences to a specific group of functionally related sequences which had been grouped through clustering techniques. The clustering procedure is based on suitable similarity rules, since predicting protein structure and function from sequence largely depends on the value of sequence identity. However, additional levels of complexity are due to multi-domain proteins, to proteins that share common domains but that do not necessarily share the same function, to the finding that different combinations of shared domains can lead to different biological roles. In the last part of this study I developed and validate a system that contributes to sequence annotation by taking advantage of a validated transfer through inheritance procedure of the molecular functions and of the structural templates. After a cross-genome comparison with the BLAST program, clusters were built on the basis of two stringent constraints on sequence identity and coverage of the alignment. The adopted measure explicity answers to the problem of multi-domain proteins annotation and allows a fine grain division of the whole set of proteomes used, that ensures cluster homogeneity in terms of sequence length. A high level of coverage of structure templates on the length of protein sequences within clusters ensures that multi-domain proteins when present can be templates for sequences of similar length. This annotation procedure includes the possibility of reliably transferring statistically validated functions and structures to sequences considering information available in the present data bases of molecular functions and structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il progetto di ricerca che presentiamo nasce dalla virtuosa combinazione di teoria e prassi didattica nello spirito della ricerca-azione. Scopo del presente lavoro è elaborare un percorso didattico di formazione alla traduzione specializzata in ambito medico-scientifico, tecnico ed economico-giuridico per la combinazione linguistica spagnolo-italiano all’interno della cornice istituzionale concreta dell’università italiana oggi. La nostra proposta formativa si fonda su tre elementi: la ricognizione del mercato attuale della traduzione per la combinazione linguistica indicata, l’individuazione degli obiettivi formativi in base al modello di competenza traduttiva scelto, l’elaborazione del percorso didattico per competenze e basato sull’enfoque por tareas di traduzione. Nella progettazione delle modalità didattiche due sono gli aspetti che definiscono il percorso proposto: il concetto di genere testuale specializzato per la traduzione e la gestione delle informazioni mediante le nuove tecnologie (corpora, banche dati terminologiche e fraseologiche, memorie di traduzione, traduzione controllata). Il presente lavoro si articola in due parti: la prima parte (quattro capitoli) presenta l’inquadramento teorico all’interno del quale si sviluppa la riflessione intorno alla didattica della traduzione specializzata; la seconda parte (due capitoli) presenta l’inquadramento metodologico e analitico all’interno del quale si elabora la nostra proposta didattica. Nel primo capitolo si illustrano i rapporti fra traduzione e mondo professionale; nel secondo capitolo si presenta il concetto di competenza traduttiva come ponte tra la formazione e il mondo della traduzione professionale; nel terzo capitolo si ripercorrono le tappe principali dell’evoluzione della didattica della traduzione generale; nel quarto capitolo illustriamo alcune tra le più recenti e complete proposte didattiche per la traduzione specializzata in ambito tecnico, medico-scientifico ed economico-giuridico. Nel quinto capitolo si introduce il concetto di genere testuale specializzato per la traduzione e nel sesto capitolo si illustra la proposta didattica per la traduzione specializzata dallo spagnolo in italiano che ha motivato il presente lavoro.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The quality of astronomical sites is the first step to be considered to have the best performances from the telescopes. In particular, the efficiency of large telescopes in UV, IR, radio etc. is critically dependent on atmospheric transparency. It is well known that the random optical effects induced on the light propagation by turbulent atmosphere also limit telescope’s performances. Nowadays, clear appears the importance to correlate the main atmospheric physical parameters with the optical quality reachable by large aperture telescopes. The sky quality evaluation improved with the introduction of new techniques, new instrumentations and with the understanding of the link between the meteorological (or synoptical parameters and the observational conditions thanks to the application of the theories of electromagnetic waves propagation in turbulent medias: what we actually call astroclimatology. At the present the site campaigns are evolved and are performed using the classical scheme of optical seeing properties, meteorological parameters, sky transparency, sky darkness and cloudiness. New concept are added and are related to the geophysical properties such as seismicity, microseismicity, local variability of the climate, atmospheric conditions related to the ground optical turbulence and ground wind regimes, aerosol presence, use of satellite data. The purpose of this project is to provide reliable methods to analyze the atmospheric properties that affect ground-based optical astronomical observations and to correlate them with the main atmospheric parameters generating turbulence and affecting the photometric accuracy. The first part of the research concerns the analysis and interpretation of longand short-time scale meteorological data at two of the most important astronomical sites located in very different environments: the Paranal Observatory in the Atacama Desert (Chile), and the Observatorio del Roque de Los Muchachos(ORM) located in La Palma (Canary Islands, Spain). The optical properties of airborne dust at ORM have been investigated collecting outdoor data using a ground-based dust monitor. Because of its dryness, Paranal is a suitable observatory for near-IR observations, thus the extinction properties in the spectral range 1.00-2.30 um have been investigated using an empirical method. Furthermore, this PhD research has been developed using several turbulence profilers in the selection of the site for the European Extremely Large Telescope(E-ELT). During the campaigns the properties of the turbulence at different heights at Paranal and in the sites located in northern Chile and Argentina have been studied. This given the possibility to characterize the surface layer turbulence at Paranal and its connection with local meteorological conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Gaia space mission is a major project for the European astronomical community. As challenging as it is, the processing and analysis of the huge data-flow incoming from Gaia is the subject of thorough study and preparatory work by the DPAC (Data Processing and Analysis Consortium), in charge of all aspects of the Gaia data reduction. This PhD Thesis was carried out in the framework of the DPAC, within the team based in Bologna. The task of the Bologna team is to define the calibration model and to build a grid of spectro-photometric standard stars (SPSS) suitable for the absolute flux calibration of the Gaia G-band photometry and the BP/RP spectrophotometry. Such a flux calibration can be performed by repeatedly observing each SPSS during the life-time of the Gaia mission and by comparing the observed Gaia spectra to the spectra obtained by our ground-based observations. Due to both the different observing sites involved and the huge amount of frames expected (≃100000), it is essential to maintain the maximum homogeneity in data quality, acquisition and treatment, and a particular care has to be used to test the capabilities of each telescope/instrument combination (through the “instrument familiarization plan”), to devise methods to keep under control, and eventually to correct for, the typical instrumental effects that can affect the high precision required for the Gaia SPSS grid (a few % with respect to Vega). I contributed to the ground-based survey of Gaia SPSS in many respects: with the observations, the instrument familiarization plan, the data reduction and analysis activities (both photometry and spectroscopy), and to the maintenance of the data archives. However, the field I was personally responsible for was photometry and in particular relative photometry for the production of short-term light curves. In this context I defined and tested a semi-automated pipeline which allows for the pre-reduction of imaging SPSS data and the production of aperture photometry catalogues ready to be used for further analysis. A series of semi-automated quality control criteria are included in the pipeline at various levels, from pre-reduction, to aperture photometry, to light curves production and analysis.