6 resultados para Assemblages of marine sponges
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Several coralligenous reefs occur in the soft bottoms of the northern Adriatic continental shelf. Mediterranean coralligenous habitats are characterised by high species diversity and are intrinsically valuable for their biological diversity and for the ecological processes they support. The conservation and management of these habitats require quantifying spatial and temporal variability of their benthic assemblages. This PhD thesis aims to give a relevant contribution to the knowledge of the structure and dynamics of the epibenthic assemblages on the coralligenous subtidal reefs occurring in the northern Adriatic Sea. The epibenthic assemblages showed a spatial variation larger compared to temporal changes, with a temporal persistence of reef-forming organisms. Assemblages spatial heterogeneity has been related to morphological features and geographical location of the reefs, together with variation in the hydrological conditions. Manipulative experiments help to understand the ecological processes structuring the benthic assemblages and maintaining their diversity. In this regards a short and long term experiment on colonization patterns of artificial substrata over a 3-year period has been performed in three reefs, corresponding to the three main types of assemblages detected in the previous study. The first colonisers, largely depending by the different larval supply, played a key role in determining the heterogeneity of the assemblages in the early stage of colonisation. Lateral invasion, from the surrounding assemblages, was the driver in structuring the mature assemblages. These complex colonisation dynamics explained the high heterogeneity of the assemblages dwelling on the northern Adriatic biogenic reefs. The buildup of these coralligenous reefs mainly depends by the bioconstruction-erosion processes that has been analysed through a field experiment. Bioconstruction, largely due to serpulid polychaetes, prevailed on erosion processes and occurred at similar rates in all sites. Similarly, the total energy contents in the benthic communities do not differ among sites, despite being provided by different species. Therefore, we can hypothesise that both bioconstruction processes and energetic storage may be limited by the availability of resources. Finally the major contribution of the zoobenthos compared to the phytobenthos to the total energetic content of assemblages suggests that the energy flow in these benthic habitats is primarily supported by planktonic food web trough the filter feeding invertebrates.
Resumo:
An appropriate management of fisheries resources can only be achieved with the continuous supply of information on the structure and biology of populations, in order to predict the temporal fluctuations. This study supports the importance of investigating the bio-ecology of increasingly exploited and poorly known species, such as gurnards (Osteichthyes, Triglidae) from Adriatic Sea (Mediterranean), to quantify their ecological role into marine community. It also focuses on investigate inter and intra-specific structuring factor of Adriatic population. These objectives were achieved by: 1) investigating aspects of the population dynamics; 2) studying the feeding biology through the examination of stomach contents; 3) using sagittal otoliths as potential marker of species life cycle; 4) getting preliminary data on mDNA phylogeny. Gurnards showed a specie-specific “critical size” coinciding with the start of sexual maturity, the tendency to migrate to greater depths, a change of diet from crustaceans to fish and an increase of variety of food items eaten. Distribution of prey items, predator size range and depth distribution were the main dimensions that influence the breadth of trophic niche and the relative difference amongst Adriatic gurnards. Several feeding preferences were individuated and a possible impact among bigger-size gurnards and other commercial fishes (anchovy, gadoids) and Crustacea (such as mantis prawn and shrimps) were to be necessary considered. Otolith studies showed that gurnard species have a very fast growth despite other results in other areas; intra-specific differences and the increase in the variability of otolith shape, sulcus acusticus shape, S:O ratios, sulcus acusticus external crystals arrangement were shown between juveniles and adults and were linked to growth (individual genetic factors) and to environmental conditions (e.g. depth and trophic niche distribution). In order to facilitate correct biological interpretation of data, molecular data were obtained for comparing morphological distance to genetic ones.
Resumo:
Habitat structure is known to influence the abundance of fishes on temperate reefs. Biotic interactions play a major role in determining the distribution and abundance of species. The significance of these forces in affecting the abundance of fishes may hinge on the presence of organisms that either create or alter habitat. On temperate reefs, for example, macroalgae are considered autogenic ecosystem engineers because they control resource availability to other species through their physical structure and provide much of the structure used by fish. On both coral and temperate reefs, small cryptic reef fishes may comprise up to half of the fish numbers and constitute a diverse community containing many specialized species. Small cryptic fishes (<100 mm total length) may be responsible for the passage of 57% of the energy flow and constitute ca. 35% of the overall reef fish biomass on coral reefs. These benthic fish exploit restricted habitats where food and shelter are obtained in, or in relation to, conditions of substrate complexity and/or restricted living space. A range of mechanisms has been proposed to account for the diversity and the abundance of small fishes: (1) lifehistory strategies that promote short generation times, (2) habitat associations and behaviour that reduce predation and (3) resource partitioning that allows small species to coexist with larger competitors. Despite their abundance and potential importance within reef systems, little is known of the community ecology of cryptic fishes. Specifically on habitat associations many theories suggested a not clear direction on this subject. My research contributes to the development of marine fish ecology by addressing the effects of habitat characteristics upon distribution of cryptobenthic fish assemblages. My focus was on the important shallow, coastal ecosystems that often serve as nursery habitat for many fish and where different type of habitat is likely to both play important roles in organism distribution and survival. My research included three related studies: (1) identification of structuring forces on cryptic fish assemblages, such as physical and biological forcing; (2) macroalgae as potential tools for cryptic fish and identification of different habitat feature that could explain cryptic fish assemblages distribution; (3) canopy formers loss: consequences on cryptic fish and relationship with benthos modifications. I found that: (1) cryptic fish assemblages differ between landward and seaward sides of coastal breakwaters in Adriatic Sea. These differences are explained by 50% of the habitat characteristics on two sides, mainly due to presence of the Codium fragile, sand and oyster assemblages. Microhabitat structure influence cryptic fish assemblages. (2) Different habitat support different cryptic fish assemblages. High heterogeneity on benthic assemblages reflect different fish assemblages. Biogenic components that explain different and diverse cryptic fish assemblages are: anemonia bed, mussel bed, macroalgal stands and Cystoseira barbata, as canopy formers. (3) Canopy forming loss is not relevant in structuring directly cryptic fish assemblages. A removal of canopy forming algae did not affect the structure of cryptic fish assemblages. Canopy formers algae on Conero cliff, does not seem to act as structuring force, probably due to its regressive status. In conclusion, cryptic fish have been shown to have species-specific associations with habitat features relating to the biological and non biological components afforded by fish. Canopy formers algae do not explain cryptic fish assemblages distribution and the results of this study and information from the literature (both from the Mediterranean Sea and elsewhere) show that there are no univocal responses of fish assemblages. Further exanimations on an non regressive status of Cystoseira canopy habitat are needed to define and evaluate the relationship between canopy formers and fish on Mediterranean sea.
Resumo:
Marine soft bottom systems show a high variability across multiple spatial and temporal scales. Both natural and anthropogenic sources of disturbance act together in affecting benthic sedimentary characteristics and species distribution. The description of such spatial variability is required to understand the ecological processes behind them. However, in order to have a better estimate of spatial patterns, methods that take into account the complexity of the sedimentary system are required. This PhD thesis aims to give a significant contribution both in improving the methodological approaches to the study of biological variability in soft bottom habitats and in increasing the knowledge of the effect that different process (both natural and anthropogenic) could have on the benthic communities of a large area in the North Adriatic Sea. Beta diversity is a measure of the variability in species composition, and Whittaker’s index has become the most widely used measure of beta-diversity. However, application of the Whittaker index to soft bottom assemblages of the Adriatic Sea highlighted its sensitivity to rare species (species recorded in a single sample). This over-weighting of rare species induces biased estimates of the heterogeneity, thus it becomes difficult to compare assemblages containing a high proportion of rare species. In benthic communities, the unusual large number of rare species is frequently attributed to a combination of sampling errors and insufficient sampling effort. In order to reduce the influence of rare species on the measure of beta diversity, I have developed an alternative index based on simple probabilistic considerations. It turns out that this probability index is an ordinary Michaelis-Menten transformation of Whittaker's index but behaves more favourably when species heterogeneity increases. The suggested index therefore seems appropriate when comparing patterns of complexity in marine benthic assemblages. Although the new index makes an important contribution to the study of biodiversity in sedimentary environment, it remains to be seen which processes, and at what scales, influence benthic patterns. The ability to predict the effects of ecological phenomena on benthic fauna highly depends on both spatial and temporal scales of variation. Once defined, implicitly or explicitly, these scales influence the questions asked, the methodological approaches and the interpretation of results. Problem often arise when representative samples are not taken and results are over-generalized, as can happen when results from small-scale experiments are used for resource planning and management. Such issues, although globally recognized, are far from been resolved in the North Adriatic Sea. This area is potentially affected by both natural (e.g. river inflow, eutrophication) and anthropogenic (e.g. gas extraction, fish-trawling) sources of disturbance. Although few studies in this area aimed at understanding which of these processes mainly affect macrobenthos, these have been conducted at a small spatial scale, as they were designated to examine local changes in benthic communities or particular species. However, in order to better describe all the putative processes occurring in the entire area, a high sampling effort performed at a large spatial scale is required. The sedimentary environment of the western part of the Adriatic Sea was extensively studied in this thesis. I have described, in detail, spatial patterns both in terms of sedimentary characteristics and macrobenthic organisms and have suggested putative processes (natural or of human origin) that might affect the benthic environment of the entire area. In particular I have examined the effect of off shore gas platforms on benthic diversity and tested their effect over a background of natural spatial variability. The results obtained suggest that natural processes in the North Adriatic such as river outflow and euthrophication show an inter-annual variability that might have important consequences on benthic assemblages, affecting for example their spatial pattern moving away from the coast and along a North to South gradient. Depth-related factors, such as food supply, light, temperature and salinity play an important role in explaining large scale benthic spatial variability (i.e., affecting both the abundance patterns and beta diversity). Nonetheless, more locally, effects probably related to an organic enrichment or pollution from Po river input has been observed. All these processes, together with few human-induced sources of variability (e.g. fishing disturbance), have a higher effect on macrofauna distribution than any effect related to the presence of gas platforms. The main effect of gas platforms is restricted mainly to small spatial scales and related to a change in habitat complexity due to a natural dislodgement or structure cleaning of mussels that colonize their legs. The accumulation of mussels on the sediment reasonably affects benthic infauna composition. All the components of the study presented in this thesis highlight the need to carefully consider methodological aspects related to the study of sedimentary habitats. With particular regards to the North Adriatic Sea, a multi-scale analysis along natural and anthopogenic gradients was useful for detecting the influence of all the processes affecting the sedimentary environment. In the future, applying a similar approach may lead to an unambiguous assessment of the state of the benthic community in the North Adriatic Sea. Such assessment may be useful in understanding if any anthropogenic source of disturbance has a negative effect on the marine environment, and if so, planning sustainable strategies for a proper management of the affected area.
Resumo:
The thesis describes the molluscan biodiversity of the infralittoral off-shore reefs in the "Secche di Tor Paterno" marine protected area lying in the Central Tyrrhenian Sea off the coasts of Lazio south of Roma. Data originate from underwater sampling activities carried out by SCUBA diving in four biocoenoses: Posidonia oceanica leaves and rhizomes, coralligenous concretions and detritic pools. The representativeness of molluscs as descriptors of biocoenoses is evaluated by preliminary comparisons with data about Polychaeta, Pleocyemata (Crustacea) and Brachiopoda obtained in the same survey. The malacocoenoses of the four biocoenoses are treated in detail. Then data are compared with other data sets to assess differences and similarities with other communities. The agreement between death and living assemblages in the reefs is evaluated for the Posidonia oceanica and the coralligenous biocoenosis and was carried out by a set of standard metrics and some benthic ecology methods. Molluscs perform very well as descriptors of biocoenoses, better than the other phyla. The molluscan assemblages of the reefs are very rich in species despite richness is mainly concentrated in the coralligenous and in the rhizomes of Posidonia oceanica. The leaves of Posidonia oceanica host a rather poor assemblage. Detritic pools host a poor but peculiar species assemblage. The dead-live agreement showed that death assemblages are highly representative of sediments of nearby biocoenoses as a result of low bottom transport. Fidelity metrics suggest a good agreement between the living and death assemblages when species richness and taxonomic composition are considered. The study suggests that fidelity is lower when considering the species dominance. These differences could be associated to the trophism of species and possibly to the species life span.
Resumo:
Since large stretches of European coasts are already retreating and projected scenarios are worsening, many artificial structures, such as breakwaters and seawalls, are built as tool against coastal erosion. However artificial structures produce widespread changes that alter the coastal zones and affect the biological communities. My doctoral thesis analyses the consequences of different options for coastal protection, namely hard engineering ‘artificial defences’ (i.e. impact of human-made structures) and ‘no-defence’ (i.e. impact of seawater inundation). I investigated two new aspects of the potential impact of coastal defences. The first was the effect of artificial hard substrates on the fish communities structure. In particular I was interested to test if the differences among breakwaters and natural rocky reef would change depending on the nature of the surrounding habitat of the artificial structure (prevalent sandy rather than rocky). The second was the effect on the native natural sandy habitats of the organic detritus derived from hard-bottom species (green algae and mussels) detached from breakwaters. Furthermore, I investigated the ecological implication of the “no-defend” option, which allow the inundation of coastal habitats. The focus of this study was the potential effect of seawater intrusion on the degradation process of marine, salt-marsh and terrestrial detritus, including changes on the breakdown rates and the associated macrofauna. The PhD research was conducted in three areas along European coasts: North Adriatic sea, Sicilian coast and South-West England where different habitats (coastal, estuarine), biological communities (soft-bottom macro-benthos; rocky-coastal fishes; estuarine macro-invertebrates) and processes (organic enrichment; assemblage structure; leaf-litter breakdown) were analyzed. The research was carried out through manipulative and descriptive field-experiments in which specific hypothesis were tested by univariate and multivariate analyses.