27 resultados para Artificial Intelligence and Robotics

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This Thesis is composed of a collection of works written in the period 2019-2022, whose aim is to find methodologies of Artificial Intelligence (AI) and Machine Learning to detect and classify patterns and rules in argumentative and legal texts. We define our approach “hybrid”, since we aimed at designing hybrid combinations of symbolic and sub-symbolic AI, involving both “top-down” structured knowledge and “bottom-up” data-driven knowledge. A first group of works is dedicated to the classification of argumentative patterns. Following the Waltonian model of argument and the related theory of Argumentation Schemes, these works focused on the detection of argumentative support and opposition, showing that argumentative evidences can be classified at fine-grained levels without resorting to highly engineered features. To show this, our methods involved not only traditional approaches such as TFIDF, but also some novel methods based on Tree Kernel algorithms. After the encouraging results of this first phase, we explored the use of a some emerging methodologies promoted by actors like Google, which have deeply changed NLP since 2018-19 — i.e., Transfer Learning and language models. These new methodologies markedly improved our previous results, providing us with best-performing NLP tools. Using Transfer Learning, we also performed a Sequence Labelling task to recognize the exact span of argumentative components (i.e., claims and premises), thus connecting portions of natural language to portions of arguments (i.e., to the logical-inferential dimension). The last part of our work was finally dedicated to the employment of Transfer Learning methods for the detection of rules and deontic modalities. In this case, we explored a hybrid approach which combines structured knowledge coming from two LegalXML formats (i.e., Akoma Ntoso and LegalRuleML) with sub-symbolic knowledge coming from pre-trained (and then fine-tuned) neural architectures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work deals with the development of calibration procedures and control systems to improve the performance and efficiency of modern spark ignition turbocharged engines. The algorithms developed are used to optimize and manage the spark advance and the air-to-fuel ratio to control the knock and the exhaust gas temperature at the turbine inlet. The described work falls within the activity that the research group started in the previous years with the industrial partner Ferrari S.p.a. . The first chapter deals with the development of a control-oriented engine simulator based on a neural network approach, with which the main combustion indexes can be simulated. The second chapter deals with the development of a procedure to calibrate offline the spark advance and the air-to-fuel ratio to run the engine under knock-limited conditions and with the maximum admissible exhaust gas temperature at the turbine inlet. This procedure is then converted into a model-based control system and validated with a Software in the Loop approach using the engine simulator developed in the first chapter. Finally, it is implemented in a rapid control prototyping hardware to manage the combustion in steady-state and transient operating conditions at the test bench. The third chapter deals with the study of an innovative and cheap sensor for the in-cylinder pressure measurement, which is a piezoelectric washer that can be installed between the spark plug and the engine head. The signal generated by this kind of sensor is studied, developing a specific algorithm to adjust the value of the knock index in real-time. Finally, with the engine simulator developed in the first chapter, it is demonstrated that the innovative sensor can be coupled with the control system described in the second chapter and that the performance obtained could be the same reachable with the standard in-cylinder pressure sensors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Massive parallel robots (MPRs) driven by discrete actuators are force regulated robots that undergo continuous motions despite being commanded through a finite number of states only. Designing a real-time control of such systems requires fast and efficient methods for solving their inverse static analysis (ISA), which is a challenging problem and the subject of this thesis. In particular, five Artificial intelligence methods are proposed to investigate the on-line computation and the generalization error of ISA problem of a class of MPRs featuring three-state force actuators and one degree of revolute motion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hematological cancers are a heterogeneous family of diseases that can be divided into leukemias, lymphomas, and myelomas, often called “liquid tumors”. Since they cannot be surgically removable, chemotherapy represents the mainstay of their treatment. However, it still faces several challenges like drug resistance and low response rate, and the need for new anticancer agents is compelling. The drug discovery process is long-term, costly, and prone to high failure rates. With the rapid expansion of biological and chemical "big data", some computational techniques such as machine learning tools have been increasingly employed to speed up and economize the whole process. Machine learning algorithms can create complex models with the aim to determine the biological activity of compounds against several targets, based on their chemical properties. These models are defined as multi-target Quantitative Structure-Activity Relationship (mt-QSAR) and can be used to virtually screen small and large chemical libraries for the identification of new molecules with anticancer activity. The aim of my Ph.D. project was to employ machine learning techniques to build an mt-QSAR classification model for the prediction of cytotoxic drugs simultaneously active against 43 hematological cancer cell lines. For this purpose, first, I constructed a large and diversified dataset of molecules extracted from the ChEMBL database. Then, I compared the performance of different ML classification algorithms, until Random Forest was identified as the one returning the best predictions. Finally, I used different approaches to maximize the performance of the model, which achieved an accuracy of 88% by correctly classifying 93% of inactive molecules and 72% of active molecules in a validation set. This model was further applied to the virtual screening of a small dataset of molecules tested in our laboratory, where it showed 100% accuracy in correctly classifying all molecules. This result is confirmed by our previous in vitro experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since large stretches of European coasts are already retreating and projected scenarios are worsening, many artificial structures, such as breakwaters and seawalls, are built as tool against coastal erosion. However artificial structures produce widespread changes that alter the coastal zones and affect the biological communities. My doctoral thesis analyses the consequences of different options for coastal protection, namely hard engineering ‘artificial defences’ (i.e. impact of human-made structures) and ‘no-defence’ (i.e. impact of seawater inundation). I investigated two new aspects of the potential impact of coastal defences. The first was the effect of artificial hard substrates on the fish communities structure. In particular I was interested to test if the differences among breakwaters and natural rocky reef would change depending on the nature of the surrounding habitat of the artificial structure (prevalent sandy rather than rocky). The second was the effect on the native natural sandy habitats of the organic detritus derived from hard-bottom species (green algae and mussels) detached from breakwaters. Furthermore, I investigated the ecological implication of the “no-defend” option, which allow the inundation of coastal habitats. The focus of this study was the potential effect of seawater intrusion on the degradation process of marine, salt-marsh and terrestrial detritus, including changes on the breakdown rates and the associated macrofauna. The PhD research was conducted in three areas along European coasts: North Adriatic sea, Sicilian coast and South-West England where different habitats (coastal, estuarine), biological communities (soft-bottom macro-benthos; rocky-coastal fishes; estuarine macro-invertebrates) and processes (organic enrichment; assemblage structure; leaf-litter breakdown) were analyzed. The research was carried out through manipulative and descriptive field-experiments in which specific hypothesis were tested by univariate and multivariate analyses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mainstream hardware is becoming parallel, heterogeneous, and distributed on every desk, every home and in every pocket. As a consequence, in the last years software is having an epochal turn toward concurrency, distribution, interaction which is pushed by the evolution of hardware architectures and the growing of network availability. This calls for introducing further abstraction layers on top of those provided by classical mainstream programming paradigms, to tackle more effectively the new complexities that developers have to face in everyday programming. A convergence it is recognizable in the mainstream toward the adoption of the actor paradigm as a mean to unite object-oriented programming and concurrency. Nevertheless, we argue that the actor paradigm can only be considered a good starting point to provide a more comprehensive response to such a fundamental and radical change in software development. Accordingly, the main objective of this thesis is to propose Agent-Oriented Programming (AOP) as a high-level general purpose programming paradigm, natural evolution of actors and objects, introducing a further level of human-inspired concepts for programming software systems, meant to simplify the design and programming of concurrent, distributed, reactive/interactive programs. To this end, in the dissertation first we construct the required background by studying the state-of-the-art of both actor-oriented and agent-oriented programming, and then we focus on the engineering of integrated programming technologies for developing agent-based systems in their classical application domains: artificial intelligence and distributed artificial intelligence. Then, we shift the perspective moving from the development of intelligent software systems, toward general purpose software development. Using the expertise maturated during the phase of background construction, we introduce a general-purpose programming language named simpAL, which founds its roots on general principles and practices of software development, and at the same time provides an agent-oriented level of abstraction for the engineering of general purpose software systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The integration of quantitative data from movement analysis technologies is reshaping the analysis of athletes’ performances and injury mitigation, e.g., anterior cruciate ligament (ACL) rupture. Most of the movement assessments are performed in laboratory environments. Recent progress provides the chance to shift the paradigm to a more ecological approach with sport-specific elements and a closer examination of “real” movement patterns associated with performance and (ACL) injury risk. The present PhD thesis aimed at investigating the on-field motion patterns related to performance and injury prevention in young football players. The objectives of the thesis were: (I) in-lab measures of high-dynamics movements were used to validate wearable inertial sensors technology; (II) in-laboratory and on-field agility movement tasks were compared to inspect the effect of football-specific environment; (III) on-field analysis was conducted to challenge wearable sensors technology in the assessment of dangerous movement patterns towards the ACL rupture; (IV) an overview of technologies that could shape present and future assessment of ACL injury risk in daily practice was presented. The validity of wearables in the assessment of high-dynamics movements was confirmed. Relevant differences emerged between the movements performed in a laboratory setting and on the football pitch, supporting the inclusion of an ecological dynamics approach in preventive protocols. The on-field analysis of football-specific movement tasks demonstrated good reliability of wearable sensors and the presence of residual dangerous patterns in the injured players. A tool to inspect at-risk movement patterns on the field through objective measurements was presented. It discussed how potential alternatives to wearable inertial sensors embrace artificial intelligence and closer collaboration between clinical and technical expertise. The present thesis was meant to contribute to setting the basis for data-driven prevention protocols. A deeper comprehension of injury-related principles and counteractions will contribute to preserving athletes’ careers and health over time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rapid progression of biomedical research coupled with the explosion of scientific literature has generated an exigent need for efficient and reliable systems of knowledge extraction. This dissertation contends with this challenge through a concentrated investigation of digital health, Artificial Intelligence, and specifically Machine Learning and Natural Language Processing's (NLP) potential to expedite systematic literature reviews and refine the knowledge extraction process. The surge of COVID-19 complicated the efforts of scientists, policymakers, and medical professionals in identifying pertinent articles and assessing their scientific validity. This thesis presents a substantial solution in the form of the COKE Project, an initiative that interlaces machine reading with the rigorous protocols of Evidence-Based Medicine to streamline knowledge extraction. In the framework of the COKE (“COVID-19 Knowledge Extraction framework for next-generation discovery science”) Project, this thesis aims to underscore the capacity of machine reading to create knowledge graphs from scientific texts. The project is remarkable for its innovative use of NLP techniques such as a BERT + bi-LSTM language model. This combination is employed to detect and categorize elements within medical abstracts, thereby enhancing the systematic literature review process. The COKE project's outcomes show that NLP, when used in a judiciously structured manner, can significantly reduce the time and effort required to produce medical guidelines. These findings are particularly salient during times of medical emergency, like the COVID-19 pandemic, when quick and accurate research results are critical.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il progetto ANTE riguarda i nuovi sistemi di traduzione automatica (TA) e la loro applicazione nel mondo delle imprese. Lo studio prende spunto dai recenti sviluppi legati all’intelligenza artificiale e ai Big Data che negli ultimi anni hanno permesso alla TA di raggiungere livelli qualitativi molto elevati, al punto tale da essere impiegata da grandi multinazionali per raggiungere nuove quote di mercato. La TA può rispondere positivamente anche ai bisogni delle imprese di piccole dimensioni e a basso tenore tecnologico, migliorando la qualità delle comunicazioni multilingue attraverso delle traduzioni in tempi brevi e a costi contenuti. Lo studio si propone quindi di contribuire al rafforzamento della competitività internazionale delle piccole e medie imprese (PMI) emiliano- romagnole, migliorando la loro capacità di comunicazione in una o più lingue straniere attraverso l’introduzione e l’utilizzo efficace e consapevole di soluzioni ICT di ultima generazione e fornire, così, nuove opportunità di internazionalizzazione.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the most visionary goals of Artificial Intelligence is to create a system able to mimic and eventually surpass the intelligence observed in biological systems including, ambitiously, the one observed in humans. The main distinctive strength of humans is their ability to build a deep understanding of the world by learning continuously and drawing from their experiences. This ability, which is found in various degrees in all intelligent biological beings, allows them to adapt and properly react to changes by incrementally expanding and refining their knowledge. Arguably, achieving this ability is one of the main goals of Artificial Intelligence and a cornerstone towards the creation of intelligent artificial agents. Modern Deep Learning approaches allowed researchers and industries to achieve great advancements towards the resolution of many long-standing problems in areas like Computer Vision and Natural Language Processing. However, while this current age of renewed interest in AI allowed for the creation of extremely useful applications, a concerningly limited effort is being directed towards the design of systems able to learn continuously. The biggest problem that hinders an AI system from learning incrementally is the catastrophic forgetting phenomenon. This phenomenon, which was discovered in the 90s, naturally occurs in Deep Learning architectures where classic learning paradigms are applied when learning incrementally from a stream of experiences. This dissertation revolves around the Continual Learning field, a sub-field of Machine Learning research that has recently made a comeback following the renewed interest in Deep Learning approaches. This work will focus on a comprehensive view of continual learning by considering algorithmic, benchmarking, and applicative aspects of this field. This dissertation will also touch on community aspects such as the design and creation of research tools aimed at supporting Continual Learning research, and the theoretical and practical aspects concerning public competitions in this field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Today we live in an age where the internet and artificial intelligence allow us to search for information through impressive amounts of data, opening up revolutionary new ways to make sense of reality and understand our world. However, it is still an area of improvement to exploit the full potential of large amounts of explainable information by distilling it automatically in an intuitive and user-centred explanation. For instance, different people (or artificial agents) may search for and request different types of information in a different order, so it is unlikely that a short explanation can suffice for all needs in the most generic case. Moreover, dumping a large portion of explainable information in a one-size-fits-all representation may also be sub-optimal, as the needed information may be scarce and dispersed across hundreds of pages. The aim of this work is to investigate how to automatically generate (user-centred) explanations from heterogeneous and large collections of data, with a focus on the concept of explanation in a broad sense, as a critical artefact for intelligence, regardless of whether it is human or robotic. Our approach builds on and extends Achinstein’s philosophical theory of explanations, where explaining is an illocutionary (i.e., broad but relevant) act of usefully answering questions. Specifically, we provide the theoretical foundations of Explanatory Artificial Intelligence (YAI), formally defining a user-centred explanatory tool and the space of all possible explanations, or explanatory space, generated by it. We present empirical results in support of our theory, showcasing the implementation of YAI tools and strategies for assessing explainability. To justify and evaluate the proposed theories and models, we considered case studies at the intersection of artificial intelligence and law, particularly European legislation. Our tools helped produce better explanations of software documentation and legal texts for humans and complex regulations for reinforcement learning agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the Era of precision medicine and big medical data sharing, it is necessary to solve the work-flow of digital radiological big data in a productive and effective way. In particular, nowadays, it is possible to extract information “hidden” in digital images, in order to create diagnostic algorithms helping clinicians to set up more personalized therapies, which are in particular targets of modern oncological medicine. Digital images generated by the patient have a “texture” structure that is not visible but encrypted; it is “hidden” because it cannot be recognized by sight alone. Thanks to artificial intelligence, pre- and post-processing software and generation of mathematical calculation algorithms, we could perform a classification based on non-visible data contained in radiological images. Being able to calculate the volume of tissue body composition could lead to creating clasterized classes of patients inserted in standard morphological reference tables, based on human anatomy distinguished by gender and age, and maybe in future also by race. Furthermore, the branch of “morpho-radiology" is a useful modality to solve problems regarding personalized therapies, which is particularly needed in the oncological field. Actually oncological therapies are no longer based on generic drugs but on target personalized therapy. The lack of gender and age therapies table could be filled thanks to morpho-radiology data analysis application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents some different techniques designed to drive a swarm of robots in an a-priori unknown environment in order to move the group from a starting area to a final one avoiding obstacles. The presented techniques are based on two different theories used alone or in combination: Swarm Intelligence (SI) and Graph Theory. Both theories are based on the study of interactions between different entities (also called agents or units) in Multi- Agent Systems (MAS). The first one belongs to the Artificial Intelligence context and the second one to the Distributed Systems context. These theories, each one from its own point of view, exploit the emergent behaviour that comes from the interactive work of the entities, in order to achieve a common goal. The features of flexibility and adaptability of the swarm have been exploited with the aim to overcome and to minimize difficulties and problems that can affect one or more units of the group, having minimal impact to the whole group and to the common main target. Another aim of this work is to show the importance of the information shared between the units of the group, such as the communication topology, because it helps to maintain the environmental information, detected by each single agent, updated among the swarm. Swarm Intelligence has been applied to the presented technique, through the Particle Swarm Optimization algorithm (PSO), taking advantage of its features as a navigation system. The Graph Theory has been applied by exploiting Consensus and the application of the agreement protocol with the aim to maintain the units in a desired and controlled formation. This approach has been followed in order to conserve the power of PSO and to control part of its random behaviour with a distributed control algorithm like Consensus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Big data are reshaping the way we interact with technology, thus fostering new applications to increase the safety-assessment of foods. An extraordinary amount of information is analysed using machine learning approaches aimed at detecting the existence or predicting the likelihood of future risks. Food business operators have to share the results of these analyses when applying to place on the market regulated products, whereas agri-food safety agencies (including the European Food Safety Authority) are exploring new avenues to increase the accuracy of their evaluations by processing Big data. Such an informational endowment brings with it opportunities and risks correlated to the extraction of meaningful inferences from data. However, conflicting interests and tensions among the involved entities - the industry, food safety agencies, and consumers - hinder the finding of shared methods to steer the processing of Big data in a sound, transparent and trustworthy way. A recent reform in the EU sectoral legislation, the lack of trust and the presence of a considerable number of stakeholders highlight the need of ethical contributions aimed at steering the development and the deployment of Big data applications. Moreover, Artificial Intelligence guidelines and charters published by European Union institutions and Member States have to be discussed in light of applied contexts, including the one at stake. This thesis aims to contribute to these goals by discussing what principles should be put forward when processing Big data in the context of agri-food safety-risk assessment. The research focuses on two interviewed topics - data ownership and data governance - by evaluating how the regulatory framework addresses the challenges raised by Big data analysis in these domains. The outcome of the project is a tentative Roadmap aimed to identify the principles to be observed when processing Big data in this domain and their possible implementations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis studies how commercial practice is developing with artificial intelligence (AI) technologies and discusses some normative concepts in EU consumer law. The author analyses the phenomenon of 'algorithmic business', which defines the increasing use of data-driven AI in marketing organisations for the optimisation of a range of consumer-related tasks. The phenomenon is orienting business-consumer relations towards some general trends that influence power and behaviors of consumers. These developments are not taking place in a legal vacuum, but against the background of a normative system aimed at maintaining fairness and balance in market transactions. The author assesses current developments in commercial practices in the context of EU consumer law, which is specifically aimed at regulating commercial practices. The analysis is critical by design and without neglecting concrete practices tries to look at the big picture. The thesis consists of nine chapters divided in three thematic parts. The first part discusses the deployment of AI in marketing organisations, a brief history, the technical foundations, and their modes of integration in business organisations. In the second part, a selected number of socio-technical developments in commercial practice are analysed. The following are addressed: the monitoring and analysis of consumers’ behaviour based on data; the personalisation of commercial offers and customer experience; the use of information on consumers’ psychology and emotions, the mediation through marketing conversational applications. The third part assesses these developments in the context of EU consumer law and of the broader policy debate concerning consumer protection in the algorithmic society. In particular, two normative concepts underlying the EU fairness standard are analysed: manipulation, as a substantive regulatory standard that limits commercial behaviours in order to protect consumers’ informed and free choices and vulnerability, as a concept of social policy that portrays people who are more exposed to marketing practices.