2 resultados para Arid regions agriculture.
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Crop water requirements are important elements for food production, especially in arid and semiarid regions. These regions are experience increasing population growth and less water for agriculture, which amplifies the need for more efficient irrigation. Improved water use efficiency is needed to produce more food while conserving water as a limited natural resource. Evaporation (E) from bare soil and Transpiration (T) from plants is considered a critical part of the global water cycle and, in recent decades, climate change could lead to increased E and T. Because energy is required to break hydrogen bonds and vaporize water, water and energy balances are closely connected. The soil water balance is also linked with water vapour losses to evapotranspiration (ET) that are dependent mainly on energy balance at the Earth’s surface. This work addresses the role of evapotranspiration for water use efficiency by developing a mathematical model that improves the accuracy of crop evapotranspiration calculation; accounting for the effects of weather conditions, e.g., wind speed and humidity, on crop coefficients, which relates crop evapotranspiration to reference evapotranspiration. The ability to partition ET into Evaporation and Transpiration components will help irrigation managers to find ways to improve water use efficiency by decreasing the ratio of evaporation to transpiration. The developed crop coefficient model will improve both irrigation scheduling and water resources planning in response to future climate change, which can improve world food production and water use efficiency in agriculture.
Resumo:
The objective of this study is to measure the impact of the national subsidy scheme on the olive and fruit sector in two regions of Albania, Shkodra and Fier. From the methodological point of view, we use a non- parametric approach based on the propensity score matching. This method overcomes problem of the missing data, by creating a counterfactual scenario. In the first step, the conditional probability to participate in the program was computed. Afterwards, different matching estimators were applied to establish whether the subsidies have affected sectors performance. One of the strengths of this study stays in the data. Cross-sectional primary data was gathered through about 250 interviews.. We have not found empirical evidence of significant effects of government aid program on production. Differences in production found between beneficiaries and non-beneficiaries disappear after adjustment by the conditional probability of participating into the program. This suggests that subsidized farmers would have performed better than the subsidized households even in the absence of production grants, revealing program self-selection. On the other hand, the scheme has affected positively the farm structure increasing the area under cultivation, but yields has not increased for beneficiaries compared to non beneficiaries. These combined results shed light on the reason of the missed impact. It could be reasonable to believe that the new plantation, in particular in the case of olives, has not yet reached full production. Therefore, we have reasons to believe on positive impacts in the future. Concerning some qualitative results, the extension of area under cultivation is strongly conditioned by the small farm size. This together with a thin land market makes extremely difficult the expansion beyond farm boundaries.