4 resultados para Architecture and climate

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agriculture market instability impedes achieving the global goal of sustainable and resilient food systems. Currently, the support to producers reaches the mammoth USD 540 billion a year and is projected to reach USD 1.8 trillion by 2030. This gigantic increase requires a repurposing agricultural support strategy (RASS), considering the market country-specific circumstances. These circumstances may vary with geographic locations, marketing structures, and product value chains. The fruit production system is crucial for health-conscious consumers and profit-oriented producers for food and nutritional security. Export is one of the main driving forces behind the expansion of the fruit sector, and during the year 2010-2018, trade significantly outpaced production increases. The previous literature states that irregular and unpredictable behaviour — Chaos — can arise from entirely rational economic decision-making within markets. Different markets' direct/indirect linkages through trade create trade hubs, and uncertainty may function as an avenue to transmit adverse shocks and increase vulnerability rather than contribute to resilience. Therefore, distinguishing Chaos into an endogenous and exogenous pattern of behaviour is cradled to formulate an effective RASS for resilient food systems and to understand global food crises. The present research is aimed at studying the market dynamics of three regional trade hubs, i.e., Brazil (South America), Italy (Europe), and Pakistan (Asia), each representing advanced to traditional value chains to control uncertainty (risks). The present research encompasses 1) a systematic review to highlight the research dynamism and identify grey-areas of research. Based on the findings, we have investigated the 2) nonlinear impacts of climate-induced price responsiveness in monopsony markets. Once we highlighted the importance of marketing structures/arrangements, 3) we developed a risk transmission framework to address the co-evolving impacts in complex dynamic interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Marine healthy ecosystems support life on Earth and human well-being thanks to their biodiversity, which is proven to decline mainly due to anthropogenic stressors. Monitoring how marine biodiversity changes trough space and time is needed to properly define and enroll effective actions towards habitat conservation and preservation. This is particularly needed in those areas that are very rich in species compared to their low surface extension and are characterized by strong anthropic pressures, such as the Mediterranean Sea. Subtidal rocky benthic Mediterranean habitats have a complex structural architecture, hosting a panoply of tiny organisms (cryptofauna) that inhabit crevices and caves, but that are still unknown. Different artificial standardized sampling structures (SSS) and methods have been developed and employed to characterize the cryptofauna, allowing for data replicability and comparability across regions. Organisms growing on these artificial structures can be identified coupling morphological taxonomy and DNA barcoding and metabarcoding. The metabarcoding allows for the identification of organisms in a bulk sample without morphological analysis, and it is based on comparing the genetic similarities of the assessed organisms with barcoding sequences present in online barcoding repositories. Nevertheless, barcoded species nowadays represent only a small portion of known species, and barcoding reference databases are not always curated and updated on a regular basis. In this Thesis I used an integrative approach to characterize benthic marine biodiversity, specifically coupling morphological and molecular techniques with the employment of SSS. Moreover, I upgraded the actual status of COI (cytochrome c oxidase subunit I) barcoding of marine metazoans, and I built a customized COI barcoding reference database for metabarcoding studies on temperate biogenic reefs. This work implemented the knowledge about diversity of Mediterranean marine communities, laying the groundworks for monitoring marine and environmental changes that will occur in the next future as consequences of anthropic and climate threats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global warming and climate change have been among the most controversial topics after the industrial revolution. The main contributor to global warming is carbon dioxide (CO2), which increases the temperature by trapping heat in the atmosphere. Atmospheric CO2 concentration before the industrial era was around 280 ppm for a long period, while it has increased dramatically since the industrial revolution up to approximately 420 ppm. According to the Paris agreement it is needed to keep the temperature increase up to 2°C, preferably 1.5° C, to prevent reaching the tipping point of climate change. To keep the temperature increase below the range, it is required to find solutions to reduce CO2 emissions. The solutions can be low-carbon systems and transition from fossil fuels to renewable energy sources (RES). This thesis is allocated to the assessment of low-carbon systems and the reduction of CO2 by using RES instead of fossil fuels. One of the most important aspects to define the location and capacity of low-carbon systems is CO2 mass estimation. As mentioned, high-emission systems can be substituted by low-carbon systems. An example of high-emission systems is dredging. The global CO2 emission from dredging is relatively high which is associated with the growth of marine transport in addition to its high emission. Thus, ejectors system as alternative for dredging is investigated in chapter 2. For the transition from fossil fuels to RES, it is required to provide solutions for the RES storage problem. A solution could be zero-emission fuels such as hydrogen. However, the production of hydrogen requires electricity, and electricity production emits a large amount of CO2. Therefore, the last three chapters are allocated to hydrogen generation via electrolysis, at the current condition and scenarios of RES and variation of cell characteristics and stack materials, and its delivery.