3 resultados para Applied loads

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of guided ultrasonic waves (GUW) has increased considerably in the fields of non-destructive (NDE) testing and structural health monitoring (SHM) due to their ability to perform long range inspections, to probe hidden areas as well as to provide a complete monitoring of the entire waveguide. Guided waves can be fully exploited only once their dispersive properties are known for the given waveguide. In this context, well stated analytical and numerical methods are represented by the Matrix family methods and the Semi Analytical Finite Element (SAFE) methods. However, while the former are limited to simple geometries of finite or infinite extent, the latter can model arbitrary cross-section waveguides of finite domain only. This thesis is aimed at developing three different numerical methods for modelling wave propagation in complex translational invariant systems. First, a classical SAFE formulation for viscoelastic waveguides is extended to account for a three dimensional translational invariant static prestress state. The effect of prestress, residual stress and applied loads on the dispersion properties of the guided waves is shown. Next, a two-and-a-half Boundary Element Method (2.5D BEM) for the dispersion analysis of damped guided waves in waveguides and cavities of arbitrary cross-section is proposed. The attenuation dispersive spectrum due to material damping and geometrical spreading of cavities with arbitrary shape is shown for the first time. Finally, a coupled SAFE-2.5D BEM framework is developed to study the dispersion characteristics of waves in viscoelastic waveguides of arbitrary geometry embedded in infinite solid or liquid media. Dispersion of leaky and non-leaky guided waves in terms of speed and attenuation, as well as the radiated wavefields, can be computed. The results obtained in this thesis can be helpful for the design of both actuation and sensing systems in practical application, as well as to tune experimental setup.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The evaluation of the knee joint behavior is fundamental in many applications, such as joint modeling, prosthesis and orthosis design. In-vitro tests are important in order to analyse knee behavior when simulating various loading conditions and studying physiology of the joint. A new test rig for in-vitro evaluation of the knee joint behavior is presented in this paper. It represents the evolution of a previously proposed rig, designed to overcome its principal limitations and to improve its performances. The design procedure and the adopted solution in order to satisfy the specifications are presented here. Thanks to its 6-6 Gough-Stewart parallel manipulator loading system, the rig replicates general loading conditions, like daily actions or clinical tests, on the specimen in a wide range of flexion angles. The restraining actions of knee muscles can be simulated when active actions are simulated. The joint motion in response to the applied loads, guided by passive articular structures and muscles, is permitted by the characteristics of the loading system which is force controlled. The new test rig guarantees visibility so that motion can be measured by an optoelectronic system. Furthermore, the control system of the new test rig allows the estimation of the contribution of the principal leg muscles in guaranteeing the equilibrium of the joint by the system for muscle simulation. Accuracy in positioning is guaranteed by the designed tibia and femur fixation systems,which allow unmounting and remounting the specimen in the same pose. The test rig presented in this paper permits the analysis of the behavior of the knee joint and comparative analysis on the same specimen before and after surgery, in a way to assess the goodness of prostheses or surgical treatments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The determination of skeletal loading conditions in vivo and their relationship to the health of bone tissues, remain an open question. Computational modeling of the musculoskeletal system is the only practicable method providing a valuable approach to muscle and joint loading analyses, although crucial shortcomings limit the translation process of computational methods into the orthopedic and neurological practice. A growing attention focused on subject-specific modeling, particularly when pathological musculoskeletal conditions need to be studied. Nevertheless, subject-specific data cannot be always collected in the research and clinical practice, and there is a lack of efficient methods and frameworks for building models and incorporating them in simulations of motion. The overall aim of the present PhD thesis was to introduce improvements to the state-of-the-art musculoskeletal modeling for the prediction of physiological muscle and joint loads during motion. A threefold goal was articulated as follows: (i) develop state-of-the art subject-specific models and analyze skeletal load predictions; (ii) analyze the sensitivity of model predictions to relevant musculotendon model parameters and kinematic uncertainties; (iii) design an efficient software framework simplifying the effort-intensive phases of subject-specific modeling pre-processing. The first goal underlined the relevance of subject-specific musculoskeletal modeling to determine physiological skeletal loads during gait, corroborating the choice of full subject-specific modeling for the analyses of pathological conditions. The second goal characterized the sensitivity of skeletal load predictions to major musculotendon parameters and kinematic uncertainties, and robust probabilistic methods were applied for methodological and clinical purposes. The last goal created an efficient software framework for subject-specific modeling and simulation, which is practical, user friendly and effort effective. Future research development aims at the implementation of more accurate models describing lower-limb joint mechanics and musculotendon paths, and the assessment of an overall scenario of the crucial model parameters affecting the skeletal load predictions through probabilistic modeling.