7 resultados para Applied Mathematics|Computer Engineering|Computer science
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The term Artificial intelligence acquired a lot of baggage since its introduction and in its current incarnation is synonymous with Deep Learning. The sudden availability of data and computing resources has opened the gates to myriads of applications. Not all are created equal though, and problems might arise especially for fields not closely related to the tasks that pertain tech companies that spearheaded DL. The perspective of practitioners seems to be changing, however. Human-Centric AI emerged in the last few years as a new way of thinking DL and AI applications from the ground up, with a special attention at their relationship with humans. The goal is designing a system that can gracefully integrate in already established workflows, as in many real-world scenarios AI may not be good enough to completely replace its humans. Often this replacement may even be unneeded or undesirable. Another important perspective comes from, Andrew Ng, a DL pioneer, who recently started shifting the focus of development from “better models” towards better, and smaller, data. He defined his approach Data-Centric AI. Without downplaying the importance of pushing the state of the art in DL, we must recognize that if the goal is creating a tool for humans to use, more raw performance may not align with more utility for the final user. A Human-Centric approach is compatible with a Data-Centric one, and we find that the two overlap nicely when human expertise is used as the driving force behind data quality. This thesis documents a series of case-studies where these approaches were employed, to different extents, to guide the design and implementation of intelligent systems. We found human expertise proved crucial in improving datasets and models. The last chapter includes a slight deviation, with studies on the pandemic, still preserving the human and data centric perspective.
Resumo:
One of the most visionary goals of Artificial Intelligence is to create a system able to mimic and eventually surpass the intelligence observed in biological systems including, ambitiously, the one observed in humans. The main distinctive strength of humans is their ability to build a deep understanding of the world by learning continuously and drawing from their experiences. This ability, which is found in various degrees in all intelligent biological beings, allows them to adapt and properly react to changes by incrementally expanding and refining their knowledge. Arguably, achieving this ability is one of the main goals of Artificial Intelligence and a cornerstone towards the creation of intelligent artificial agents. Modern Deep Learning approaches allowed researchers and industries to achieve great advancements towards the resolution of many long-standing problems in areas like Computer Vision and Natural Language Processing. However, while this current age of renewed interest in AI allowed for the creation of extremely useful applications, a concerningly limited effort is being directed towards the design of systems able to learn continuously. The biggest problem that hinders an AI system from learning incrementally is the catastrophic forgetting phenomenon. This phenomenon, which was discovered in the 90s, naturally occurs in Deep Learning architectures where classic learning paradigms are applied when learning incrementally from a stream of experiences. This dissertation revolves around the Continual Learning field, a sub-field of Machine Learning research that has recently made a comeback following the renewed interest in Deep Learning approaches. This work will focus on a comprehensive view of continual learning by considering algorithmic, benchmarking, and applicative aspects of this field. This dissertation will also touch on community aspects such as the design and creation of research tools aimed at supporting Continual Learning research, and the theoretical and practical aspects concerning public competitions in this field.
Resumo:
The world of Computational Biology and Bioinformatics presently integrates many different expertise, including computer science and electronic engineering. A major aim in Data Science is the development and tuning of specific computational approaches to interpret the complexity of Biology. Molecular biologists and medical doctors heavily rely on an interdisciplinary expert capable of understanding the biological background to apply algorithms for finding optimal solutions to their problems. With this problem-solving orientation, I was involved in two basic research fields: Cancer Genomics and Enzyme Proteomics. For this reason, what I developed and implemented can be considered a general effort to help data analysis both in Cancer Genomics and in Enzyme Proteomics, focusing on enzymes which catalyse all the biochemical reactions in cells. Specifically, as to Cancer Genomics I contributed to the characterization of intratumoral immune microenvironment in gastrointestinal stromal tumours (GISTs) correlating immune cell population levels with tumour subtypes. I was involved in the setup of strategies for the evaluation and standardization of different approaches for fusion transcript detection in sarcomas that can be applied in routine diagnostic. This was part of a coordinated effort of the Sarcoma working group of "Alleanza Contro il Cancro". As to Enzyme Proteomics, I generated a derived database collecting all the human proteins and enzymes which are known to be associated to genetic disease. I curated the data search in freely available databases such as PDB, UniProt, Humsavar, Clinvar and I was responsible of searching, updating, and handling the information content, and computing statistics. I also developed a web server, BENZ, which allows researchers to annotate an enzyme sequence with the corresponding Enzyme Commission number, the important feature fully describing the catalysed reaction. More to this, I greatly contributed to the characterization of the enzyme-genetic disease association, for a better classification of the metabolic genetic diseases.
Resumo:
Sketches are a unique way to communicate: drawing a simple sketch does not require any training, sketches convey information that is hard to describe with words, they are powerful enough to represent almost any concept, and nowadays, it is possible to draw directly from mobile devices. Motivated from the unique characteristics of sketches and fascinated by the human ability to imagine 3D objects from drawings, this thesis focuses on automatically associating geometric information to sketches. The main research directions of the thesis can be summarized as obtaining geometric information from freehand scene sketches to improve 2D sketch-based tasks and investigating Vision-Language models to overcome 3D sketch-based tasks limitations. The first part of the thesis concerns geometric information prediction from scene sketches improving scene sketch to image generation and unlocking new creativity effects. The thesis proceeds showing a study conducted on the Vision-Language models embedding space considering sketches, line renderings and RGB renderings of 3D shape to overcome the use of supervised datasets for 3D sketch-based tasks, that are limited and hard to acquire. Following the obtained observations and results, Vision-Language models are applied to Sketch Based Shape Retrieval without the need of training on supervised datasets. We then analyze the use of Vision-Language models for sketch based 3D reconstruction in an unsupervised manner. In the final chapter we report the results obtained in an additional project carried during the PhD, which has lead to the development of a framework to learn an embedding space of neural networks that can be navigated to get ready-to-use models with desired characteristics.
Resumo:
This thesis reports on the two main areas of our research: introductory programming as the traditional way of accessing informatics and cultural teaching informatics through unconventional pathways. The research on introductory programming aims to overcome challenges in traditional programming education, thus increasing participation in informatics. Improving access to informatics enables individuals to pursue more and better professional opportunities and contribute to informatics advancements. We aimed to balance active, student-centered activities and provide optimal support to novices at their level. Inspired by Productive Failure and exploring the concept of notional machine, our work focused on developing Necessity Learning Design, a design to help novices tackle new programming concepts. Using this design, we implemented a learning sequence to introduce arrays and evaluated it in a real high-school context. The subsequent chapters discuss our experiences teaching CS1 in a remote-only scenario during the COVID-19 pandemic and our collaborative effort with primary school teachers to develop a learning module for teaching iteration using a visual programming environment. The research on teaching informatics principles through unconventional pathways, such as cryptography, aims to introduce informatics to a broader audience, particularly younger individuals that are less technical and professional-oriented. It emphasizes the importance of understanding informatics's cultural and scientific aspects to focus on the informatics societal value and its principles for active citizenship. After reflecting on computational thinking and inspired by the big ideas of science and informatics, we describe our hands-on approach to teaching cryptography in high school, which leverages its key scientific elements to emphasize its social aspects. Additionally, we present an activity for teaching public-key cryptography using graphs to explore fundamental concepts and methods in informatics and mathematics and their interdisciplinarity. In broadening the understanding of informatics, these research initiatives also aim to foster motivation and prime for more professional learning of informatics.
Resumo:
The discovery of new materials and their functions has always been a fundamental component of technological progress. Nowadays, the quest for new materials is stronger than ever: sustainability, medicine, robotics and electronics are all key assets which depend on the ability to create specifically tailored materials. However, designing materials with desired properties is a difficult task, and the complexity of the discipline makes it difficult to identify general criteria. While scientists developed a set of best practices (often based on experience and expertise), this is still a trial-and-error process. This becomes even more complex when dealing with advanced functional materials. Their properties depend on structural and morphological features, which in turn depend on fabrication procedures and environment, and subtle alterations leads to dramatically different results. Because of this, materials modeling and design is one of the most prolific research fields. Many techniques and instruments are continuously developed to enable new possibilities, both in the experimental and computational realms. Scientists strive to enforce cutting-edge technologies in order to make progress. However, the field is strongly affected by unorganized file management, proliferation of custom data formats and storage procedures, both in experimental and computational research. Results are difficult to find, interpret and re-use, and a huge amount of time is spent interpreting and re-organizing data. This also strongly limit the application of data-driven and machine learning techniques. This work introduces possible solutions to the problems described above. Specifically, it talks about developing features for specific classes of advanced materials and use them to train machine learning models and accelerate computational predictions for molecular compounds; developing method for organizing non homogeneous materials data; automate the process of using devices simulations to train machine learning models; dealing with scattered experimental data and use them to discover new patterns.
Resumo:
Knowledge graphs and ontologies are closely related concepts in the field of knowledge representation. In recent years, knowledge graphs have gained increasing popularity and are serving as essential components in many knowledge engineering projects that view them as crucial to their success. The conceptual foundation of the knowledge graph is provided by ontologies. Ontology modeling is an iterative engineering process that consists of steps such as the elicitation and formalization of requirements, the development, testing, refactoring, and release of the ontology. The testing of the ontology is a crucial and occasionally overlooked step of the process due to the lack of integrated tools to support it. As a result of this gap in the state-of-the-art, the testing of the ontology is completed manually, which requires a considerable amount of time and effort from the ontology engineers. The lack of tool support is noticed in the requirement elicitation process as well. In this aspect, the rise in the adoption and accessibility of knowledge graphs allows for the development and use of automated tools to assist with the elicitation of requirements from such a complementary source of data. Therefore, this doctoral research is focused on developing methods and tools that support the requirement elicitation and testing steps of an ontology engineering process. To support the testing of the ontology, we have developed XDTesting, a web application that is integrated with the GitHub platform that serves as an ontology testing manager. Concurrently, to support the elicitation and documentation of competency questions, we have defined and implemented RevOnt, a method to extract competency questions from knowledge graphs. Both methods are evaluated through their implementation and the results are promising.