6 resultados para Antioxidant properties

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

"Bioactive compounds" are extranutritional constituents that typically occur in small quantities in food. They are being intensively studied to evaluate their effects on health. Bioactive compounds include both water soluble compounds, such as phenolics, and lipidic substances such as n-3 fatty acids, tocopherols and sterols. Phenolic compounds, tocopherols and sterols are present in all plants and have been studied extensively in cereals, nuts and oil. n-3 fatty acids are present in fish and all around the vegetable kingdom. The aim of the present work was the determination of bioactive and potentially toxic compounds in cereal based foods and nuts. The first section of this study was focused on the determination of bioactive compounds in cereals. Because of that the different forms of phytosterols were investigated in hexaploid and tetraploid wheats. Hexaploid cultivars were the best source of esterified sterols (40.7% and 37.3% of total sterols for Triticum aestivum and Triticum spelta, respectively). Significant amounts of free sterols (65.5% and 60.7% of total sterols for Triticum durum and Triticum dicoccon, respectively) were found in the tetraploid cultivars. Then, free and bound phenolic compounds were identified in barley flours. HPLCESI/ MSD analysis in negative and positive ion mode established that barley free flavan-3- ols and proanthocyanidins were four dimers and four trimers having (epi)catechin and/or (epi)gallocatechin (C and/or GC) subunits. Hydroxycinnamic acids and their derivatives were the main bound phenols in barley flours. The results obtained demonstrated that barley flours were rich in phenolic compounds that showed high antioxidant activity. The study also examined the relationships between phenolic compounds and lipid oxidation of bakery. To this purpose, the investigated barley flours were used in the bakery production. The formulated oven products presented an interesting content of phenolic compounds, but they were not able to contain the lipid oxidation. Furthermore, the influence of conventional packaging on lipid oxidation of pasta was evaluated in n-3 enriched spaghetti and egg spaghetti. The results proved that conventional packaging was not appropriated to preserve pasta from lipid oxidation; in fact, pasta that was exposed to light showed a high content of potentially toxic compounds derived from lipid oxidation (such as peroxide, oxidized fatty acids and COPs). In the second section, the content of sterols, phenolic compounds, n-3 fatty acids and tocopherols in walnuts were reported. Rapid analytical techniques were used to analyze the lipid fraction and to characterize phenolic compounds in walnuts. Total lipid chromatogram was used for the simultaneous determination of the profile of sterols and tocopherols. Linoleic and linolenic acids were the most representative n-6 and n-3 essential dietary fatty acids present in these nuts. Walnuts contained substantial amounts of γ- and δ-tocopherol, which explained their antioxidant properties. Sitosterol, Δ5-avenasterol and campesterol were the major free sterols found. Capillary electrophoresis coupled to DAD and microTOF was utilized to determine phenolic content of walnut. A new compound in walnut ((2E,4E)- 8-hydroxy-2,7-dimethyl-2,4-decadiene-1,10-dioic acid 6-O-β-D-glucopiranosyl ester, [M−H]− 403.161m/z) with a structure similar to glansreginins was also identified. Phenolic compounds corresponded to 14–28% of total polar compounds quantified. Aglycone and glycosylated ellagic acid represented the principal components and account for 64–75% of total phenols in walnuts. However, the sum of glansreginins A, B and ((2E,4E)-8-hydroxy- 2,7-dimethyl-2,4-decadiene-1,10-dioic acid 6-O-β-D-glucopiranosyl ester was in the range of 72–86% of total quantified compounds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The olive oil extraction industry is responsible for the production of high quantities of vegetation waters, represented by the constitutive water of the olive fruit and by the water used during the process. This by-product represent an environmental problem in the olive’s cultivation areas because of its high content of organic matter, with high value of BOD5 and COD. For that reason the disposal of the vegetation water is very difficult and needs a previous depollution. The organic matter of vegetation water mainly consists of polysaccharides, sugars, proteins, organic acids, oil and polyphenols. This last compounds are the principal responsible for the pollution problems, due to their antimicrobial activity, but, at the same time they are well known for their antioxidant properties. The most concentrate phenolic compounds in waters and also in virgin olive oils are secoiridoids like oleuropein, demethyloleuropein and ligstroside derivatives (the dialdehydic form of elenolic acid linked to 3,4-DHPEA, or p-HPEA (3,4-DHPEA-EDA or p-HPEA-EDA) and an isomer of the oleuropein aglycon (3,4-DHPEA-EA). The management of the olive oil vegetation water has been extensively investigated and several different valorisation methods have been proposed, such as the direct use as fertilizer or the transformation by physico-chemical or biological treatments. During the last years researchers focused their interest on the recovery of the phenolic fraction from this waste looking for its exploitation as a natural antioxidant source. At the present only few contributes have been aimed to the utilization for a large scale phenols recovery and further investigations are required for the evaluation of feasibility and costs of the proposed processes. The present PhD thesis reports a preliminary description of a new industrial scale process for the recovery of the phenolic fraction from olive oil vegetation water treated with enzymes, by direct membrane filtration (microfiltration/ultrafiltration with a cut-off of 250 KDa, ultrafiltration with a cut-off of 7 KDa/10 KDa and nanofiltration/reverse osmosis), partial purification by the use of a purification system based on SPE analysis and by a liquid-liquid extraction system (LLE) with contemporary reduction of the pollution related problems. The phenolic fractions of all the samples obtained were qualitatively and quantitatively by HPLC analysis. The work efficiency in terms of flows and in terms of phenolic recovery gave good results. The final phenolic recovery is about 60% respect the initial content in the vegetation waters. The final concentrate has shown a high content of phenols that allow to hypothesize a possible use as zootechnic nutritional supplements. The purification of the final concentrate have garanteed an high purity level of the phenolic extract especially in SPE analysis by the use of XAD-16 (73% of the total phenolic content of the concentrate). This purity level could permit a future food industry employment such as food additive, or, thanks to the strong antioxidant activity, it would be also use in pharmaceutical or cosmetic industry. The vegetation water depollutant activity has brought good results, as a matter of fact the final reverse osmosis permeate has a low pollutant rate in terms of COD and BOD5 values (2% of the initial vegetation water), that could determinate a recycling use in the virgin olive oil mechanical extraction system producing a water saving and reducing thus the oil industry disposal costs .

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Mediterranean diet is rich in healthy substances such as fibres, vitamins and phenols. Often these molecules are lost during food processing. Olive oil milling waste waters, brans, grape skins are some of the most relevant agri-food by-products in the Mediterranean countries. These wastes are still rich in extremely valuable molecules, such as phenolic antioxidants, that have several interesting health promoting properties. Using innovative environmental friendly technologies based in the rational use of enzymatic treatment is possible to obtain from agri-food by-products new ingredients containing antioxidants that can be used as functional ingredients in order to produce fortified foods. These foods, having health protecting/promoting properties, on top of the traditional nutritional properties, are attracting consumer’s attentions due to the increasing awareness on health protection through prevention. The use of these new ingredients in different food preparation was studied in order to evaluate the effects that the food processing might have on the antioxidant fraction, the effect of these ingredient on foods appearances as well as the impact in terms of taste and scent, crucial feature for the acceptability of the final product. Using these new ingredients was possible to produce antioxidant bred, pasta, cheese, cookies and ice-cream. These food products retains very well the antioxidant properties conferred by the added ingredients despite the very different treatments that were performed. The food obtained had a good palatability and in some cases the final product had also a good success on the market.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this thesis was to synthesize multipotent drugs for the treatment of Alzheimer’s disease (AD) and for benign prostatic hyperplasia (BPH), two diseases that affect the elderly. AD is a neurodegenerative disorder that is characterized, among other factors, by loss of cholinergic neurons. Selective activation of M1 receptors through an allosteric site could restore the cholinergic hypofunction, improving the cognition in AD patients. We describe here the discovery and SAR of a novel series of quinone derivatives. Among them, 1 was the most interesting, being a high M1 selective positive allosteric modulator. At 100 nM, 1 triplicated the production of cAMP induced by oxotremorine. Moreover, it inhibited AChE and it displayed antioxidant properties. Site-directed mutagenesis experiments indicated that 1 acts at an allosteric site involving residue F77. Thus, 1 is a promising drug because the M1 activation may offer disease-modifying properties that could address and reduce most of AD hallmarks. BPH is an enlargement of the prostate caused by increased cellular growth. Blockade of α1-ARs is the predominant form of medical therapy for the treatment of the symptoms associated with BPH. α1-ARs are classified into three subtypes. The α1A- and α1D-AR subtypes are predominant in the prostate, while α1B-ARs regulate the blood pressure. Herein, we report the synthesis of quinazoline-derivatives obtained replacing the piperazine ring of doxazosin and prazosin with (S)- or (R)-3-aminopiperidine. The presence of a chiral center in the 3-C position of the piperidine ring allowed us to exploit the importance of stereochemistry in the binding at α1-ARs. It turned out that the S configuration at the 3-C position of the piperidine increases the affinity of the compounds at all three α1-AR subtypes, whereas the configuration at the benzodioxole ring of doxazosin derivatives is not critical for the interaction with α1-ARs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Food technologies today mean reducing agricultural food waste, improvement of food security, enhancement of food sensory properties, enlargement of food market and food economies. Food technologists must be high-skilled technicians with good scientific knowledge of food hygiene, food chemistry, industrial technologies and food engineering, sensory evaluation experience and analytical chemistry. Their role is to apply the modern vision of science in the field of human nutrition, rising up knowledge in food science. The present PhD project starts with the aim of studying and improving frozen fruits quality. Freezing process in very powerful in preserve initial raw material characteristics, but pre-treatment before the freezing process are necessary to improve quality, in particular to improve texture and enzymatic activity of frozen foods. Osmotic Dehydration (OD) and Vacuum Impregnation (VI), are useful techniques to modify fruits and vegetables composition and prepare them to freezing process. These techniques permit to introduce cryo-protective agent into the food matrices, without significant changes of the original structure, but cause a slight leaching of important intrinsic compounds. Phenolic and polyphenolic compounds for example in apples and nectarines treated with hypertonic solutions are slightly decreased, but the effect of concentration due to water removal driven out from the osmotic gradient, cause a final content of phenolic compounds similar to that of the raw material. In many experiment, a very important change in fruit composition regard the aroma profile. This occur in strawberries osmo-dehydrated under vacuum condition or under atmospheric pressure condition. The increment of some volatiles, probably due to fermentative metabolism induced by the osmotic stress of hypertonic treatment, induce a sensory profile modification of frozen fruits, that in some way result in a better acceptability of consumer, that prefer treated frozen fruits to untreated frozen fruits. Among different processes used, a very interesting result was obtained with the application of a osmotic pre-treatment driven out at refrigerated temperature for long time. The final quality of frozen strawberries was very high and a peculiar increment of phenolic profile was detected. This interesting phenomenon was probably due to induction of phenolic biological synthesis (for example as reaction to osmotic stress), or to hydrolysis of polymeric phenolic compounds. Aside this investigation in the cryo-stabilization and dehydrofreezing of fruits, deeper investigation in VI techniques were carried out, as studies of changes in vacuum impregnated prickly pear texture, and in use of VI and ultrasound (US) in aroma enrichment of fruit pieces. Moreover, to develop sensory evaluation tools and analytical chemistry determination (of volatiles and phenolic compounds), some researches were bring off and published in these fields. Specifically dealing with off-flavour development during storage of boiled potato, and capillary zonal electrophoresis (CZE) and high performance liquid chromatography (HPLC) determination of phenolic compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Minor components are of particular interest due to their antioxidant and biological properties. Various classes of lipophilic minor components (plant sterols (PS) and α-tocopherol) were selected as they are widely used in the food industry. A Fast GC-MS method for PS analysis in functional dairy products was set up. The analytical performance and significant reduction of the analysis time and consumables, demonstrated that Fast GC-MS could be suitable for the PS analysis in functional dairy products. Due to their chemical structure, PS can undergo oxidation, which could be greatly impacted by matrix nature/composition and thermal treatments. The oxidative stability of PS during microwave heating was evaluated. Two different model systems (PS alone and in combination) were heated up to 30 min at 1000 W. PS degraded faster when they were alone than in presence of TAG. The extent of PS degradation depends on both heating time and the surrounding medium, which can impact the quality and safety of the food product destined to microwave heating/cooking. Many minor lipid components are included in emulsion systems and can affect the rate of lipid oxidation. The oxidative stability of oil-in-water (O/W) emulsions containing PS esters, ω-3 FA and phenolic compounds, were evaluated after a 14-day storage at room temperature. Due to their surface active character, PS could be particularly prone to oxidation when they are incorporated in emulsions, as they are more exposed to water-soluble prooxidants. Finally, some minor lipophilic components may increase oxidative stability of food systems due to their antioxidant activity. á-tocopherol partitioning and antioxidant activity was determined in the presence of excess SDS in stripped soybean O/W emulsions. Results showed that surfactant micelles could play a key role as an antioxidant carrier, by potentially increasing the accessibility of hydrophobic antioxidant to the interface.