2 resultados para Antineoplastic

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Controlled delivery of anticancer drugs through osteotropic nanoparticles (NP) is a novel approach for the adjuvant therapy of osteolytic bone metastases. Doxorubicin (DXR) is widely used in chemotherapy, although its activity is restricted by dose-dependent cardiotoxicity and marrow toxicity. However, its efficacy can be improved when specific targeting at the tumor site is obtained. The aim of this study was to obtain osteotropic biodegradable NP by nanoprecipitation of a copolymer between poly(D,L-lactide-co-glycolide) (PLGA) and an osteotropic bisphosphonate, sodium alendronate (ALE). NP were subsequently characterised for their chemical-physical properties, biocompatibility, and the ability to inhibit osteoclast-mediated bone resorption, and then loaded with DXR. The effectiveness of NP-loaded DXR was investigated through in vitro and in vivo experiments, and compared to that of free DXR. For the in vitro analysis, six human cell lines were used as a representative panel of bone tumors, including breast and renal adenocarcinoma, osteosarcoma and neuroblastoma. The in vitro uptake and the inhibition of tumor cell proliferation were verified. To analyse the in vivo activity of NP-loaded DXR, osteolytic bone metastases were induced through the intratibial inoculation in BALB/c-nu/nu mice of a human breast cancer cell line, followed by the intraperitoneal administration of the free or NP-loaded DXR. In vitro, aAll of the cell lines were able to uptake both free and NP-loaded drug, and their proliferation was inhibited up to 80% after incubation either with free or NP-loaded DXR. In addition, in vivo experiments showed that NP-loaded DXR were also able to reduce the incidence of bone metastases, not only in comparison with untreated mice, but also with free DXR-treated mice. In conclusion, this research demonstrated an improvement in the therapeutic effect of the antineoplastic drug DXR, when loaded to bone-targeted NP conjugated with ALE. Osteotropic PLGA-ALE NP are suitable to be loaded with DXR and offer as a valuable tool for a tissue specific treatment of skeletal metastases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxidative DNA damages determine the activation of cell repair processes. These processes originate repair products, including the most studied one, 8-hydroxy-2’-deoxyguanosine (8-OH-dG). Several analytical techniques have been applied to measure urinary 8-OH-dG, but a discrepancy in basal urinary 8-OH-dG levels has been noted when comparing chromatographic techniques with immunoenzymatic assays (ELISA). Our laboratory has developed a fully validated, liquid chromatography-tandem mass spectrometry method presenting high sensitivity and specificity, which has participated in an inter-laboratory validation of assays for the measurement of urinary 8-OH-dG (ESCULA project). Mass Spectrometric techniques showed more accuracy and specificity than immunoenzymatic methods. Human spot urine samples were analyzed in order to investigate the possibility to correct urinary lesion measurements for creatinine and to evaluate the intra- and inter-day variability of 8-OH-dG excretion in urine. Our results confirm the opportunity to delve into these issues. Finally, we measured urinary 8-OH-dG in workers exposed to antineoplastic drugs and in a group of unexposed subjects to evaluate the relationship between occupational exposure and oxidative damage related to the internal dose. We found higher levels of 8-OH-dG in exposed nurses, but, as compared to the non-exposed subjects, the difference was not statistically significant, probably do to the very low level of exposure. The scientific literature is rapidly developing on the topic of DNA damage and related repair capacity. Nevertheless, further studies are needed to achieve a better understanding of the sources of DNA lesions in urine and their significance, both in clinical and occupational medicine.