8 resultados para Anthropology, Cultural|Geography|Sociology, Social Structure and Development|Environmental Sciences
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This dissertation explores how diseases contributed to shape historical institutions and how health and diseases are still affecting modern comparative development. The overarching goal of this investigation is to identify the channels linking geographic suitability to diseases and the emergence of historical and modern insitutions, while tackling the endogenenity problems that traditionally undermine this literature. I attempt to do so by taking advantage of the vast amount of newly available historical data and of the richness of data accessible through the geographic information system (GIS). The first chapter of my thesis, 'Side Effects of Immunities: The African Slave Trade', proposes and test a novel explanation for the origins of slavery in the tropical regions of the Americas. I argue that Africans were especially attractive for employment in tropical areas because they were immune to many of the diseases that were ravaging those regions. In particular, Africans' resistance to malaria increased the profitability of slaves coming from the most malarial parts of Africa. In the second chapter of my thesis, 'Caste Systems and Technology in Pre-Modern Societies', I advance and test the hypothesis that caste systems, generally viewed as a hindrance to social mobility and development, had been comparatively advantageous at an early stage of economic development. In the third chapter, 'Malaria as Determinant of Modern Ethnolinguistic Diversity', I conjecture that in highly malarious areas the necessity to adapt and develop immunities specific to the local disease environment historically reduced mobility and increased isolation, thus leading to the formation of a higher number of different ethnolinguistic groups. In the final chapter, 'Malaria Risk and Civil Violence: A Disaggregated Analysis for Africa', I explore the relationship between malaria and violent conflicts. Using georeferenced data for Africa, the article shows that violent events are more frequent in areas where malaria risk is higher.
Resumo:
The Reverse Vaccinology (RV) approach allows using genomic information for the delineation of new protein-based vaccines starting from an in silico analysis. The first powerful example of the application of the RV approach is given by the development of a protein-based vaccine against serogroup B Meningococcus. A similar approach was also used to identify new Staphylococcus aureus vaccine candidates, including the ferric hydroxamate-binding lipoprotein FhuD2. S. aureus is a widespread human pathogen, which employs various different strategies for iron uptake, including: (i) siderophore-mediated iron acquisition using the endogenous siderophores staphyloferrin A and B, (ii) siderophore-mediated iron acquisition using xeno-siderophores (the pathway exploited by FhuD2) and (iii) heme-mediated iron acquisition. In this work the high resolution crystal structure of FhuD2 in the iron (III)-siderophore-bound form was determined. FhuD2 belongs to the Periplasmic Binding Protein family (PBP ) class III, and is principally formed by two globular domains, at the N- and C-termini of the protein, that make up a cleft where ferrichrome-iron (III) is bound. The N- and C-terminal domains, connected by a single long α-helix, present Rossmann-like folds, showing a β-stranded core and an α-helical periphery, which do not undergo extensive structural rearrangement when they interact with the ligand, typical of class III PBP members. The structure shows that ferrichrome-bound iron does not come directly into contact with the protein; rather, the metal ion is fully coordinated by six oxygen donors of the hydroxamate groups of three ornithine residues, which, with the three glycine residues, make up the peptide backbone of ferrichrome. Furthermore, it was found that iron-free ferrichrome is able to subtract iron from transferrin. This study shows for the first time the structure of FhuD2, which was found to bind to siderophores ,and that the protein plays an important role in S. aureus colonization and infection phases.
Resumo:
In this thesis the evolution of the techno-social systems analysis methods will be reported, through the explanation of the various research experience directly faced. The first case presented is a research based on data mining of a dataset of words association named Human Brain Cloud: validation will be faced and, also through a non-trivial modeling, a better understanding of language properties will be presented. Then, a real complex system experiment will be introduced: the WideNoise experiment in the context of the EveryAware european project. The project and the experiment course will be illustrated and data analysis will be displayed. Then the Experimental Tribe platform for social computation will be introduced . It has been conceived to help researchers in the implementation of web experiments, and aims also to catalyze the cumulative growth of experimental methodologies and the standardization of tools cited above. In the last part, three other research experience which already took place on the Experimental Tribe platform will be discussed in detail, from the design of the experiment to the analysis of the results and, eventually, to the modeling of the systems involved. The experiments are: CityRace, about the measurement of human traffic-facing strategies; laPENSOcosì, aiming to unveil the political opinion structure; AirProbe, implemented again in the EveryAware project framework, which consisted in monitoring air quality opinion shift of a community informed about local air pollution. At the end, the evolution of the technosocial systems investigation methods shall emerge together with the opportunities and the threats offered by this new scientific path.
Design and Development of a Research Framework for Prototyping Control Tower Augmented Reality Tools
Resumo:
The purpose of the air traffic management system is to ensure the safe and efficient flow of air traffic. Therefore, while augmenting efficiency, throughput and capacity in airport operations, attention has rightly been placed on doing it in a safe manner. In the control tower, many advances in operational safety have come in the form of visualization tools for tower controllers. However, there is a paradox in developing such systems to increase controllers' situational awareness: by creating additional computer displays, the controller's vision is pulled away from the outside view and the time spent looking down at the monitors is increased. This reduces their situational awareness by forcing them to mentally and physically switch between the head-down equipment and the outside view. This research is based on the idea that augmented reality may be able to address this issue. The augmented reality concept has become increasingly popular over the past decade and is being proficiently used in many fields, such as entertainment, cultural heritage, aviation, military & defense. This know-how could be transferred to air traffic control with a relatively low effort and substantial benefits for controllers’ situation awareness. Research on this topic is consistent with SESAR objectives of increasing air traffic controllers’ situation awareness and enable up to 10 % of additional flights at congested airports while still increasing safety and efficiency. During the Ph.D., a research framework for prototyping augmented reality tools was set up. This framework consists of methodological tools for designing the augmented reality overlays, as well as of hardware and software equipment to test them. Several overlays have been designed and implemented in a simulated tower environment, which is a virtual reconstruction of Bologna airport control tower. The positive impact of such tools was preliminary assessed by means of the proposed methodology.
Resumo:
This PhD thesis investigates children’s peer practices in two primary schools in Italy, focusing on the ordinary and the Italian L2 classroom. The study is informed by the paradigm of language socialization and considers peer interactions as a ‘double opportunity space’, allowing both children’s co-construction of their social organization and children’s sociolinguistic development. These two foci of attention are explored on the basis of children’s social interaction and of the verbal, embodied, and material resources that children agentively deploy during their mundane activities in the peer group. The study is based on a video ethnography that lasted nine months. Approximately 30 hours of classroom interactions were video-recorded, transcribed, and analyzed with an approach that combines the micro-analytic instruments of Conversation Analysis and the use of ethnographic information. Three main social phenomena were selected for analysis: (a) children’s enactment of the role of the teacher, (b) children’s reproduction of must-formatted rules, and (c) children’s argumentative strategies during peer conflict. The analysis highlights the centrality of the institutional frame for children’s peer interactions in the classroom. Moreover, the study illustrates that children socialize their classmates to the linguistic, social, and moral expectations of the context in and through various practices. Notably, these practices are also germane to the local negotiation of children’s social organization and hierarchy. Therefore, the thesis underlines that children’s peer interactions are both a resource for children’s sociolinguistic development and a potentially problematic locus where social exclusion is constructed and brought to bear. These insights are relevant for teachers’ professional practice. Children’s peer interactions are a resource that can be integrated in everyday didactics. Nevertheless, the role of the teacher in supervising and steering children’s peer practices appears crucial: an acritical view of children’s autonomous work, often implied in teaching methods such as peer tutoring, needs to be problematized.
Resumo:
The work activities reported in this PhD thesis regard the functionalization of composite materials and the realization of energy harvesting devices by using nanostructured piezoelectric materials, which can be integrated in the composite without affecting its mechanical properties. The self-sensing composite materials were fabricated by interleaving between the plies of the laminate the piezoelectric elements. The problem of negatively impacting on the mechanical properties of the hosting structure was addressed by shaping the piezoelectric materials in appropriate ways. In the case of polymeric piezoelectric materials, the electrospinning technique allowed to produce highly-porous nanofibrous membranes which can be immerged in the hosting matrix without inducing delamination risk. The flexibility of the polymers was exploited also for the production of flexible tactile sensors. The sensing performances of the specimens were evaluated also in terms of lifetime with fatigue tests. In the case of ceramic piezo-materials, the production and the interleaving of nanometric piezoelectric powder limitedly affected the impact resistance of the laminate, which showed enhanced sensing properties. In addition to this, a model was proposed to predict the piezoelectric response of the self-sensing composite materials as function of the amount of the piezo-phase within the laminate and to adapt its sensing functionalities also for quasi-static loads. Indeed, one final application of the work was to integrate the piezoelectric nanofibers in the sole of a prosthetic foot in order to detect the walking cycle, which has a period in the order of 1 second. In the end, the energy harvesting capabilities of the piezoelectric materials were investigated, with the aim to design wearable devices able to collect energy from the environment and from the body movements. The research activities focused both on the power transfer capability to an external load and the charging of an energy storage unit, like, e.g., a supercapacitor.
Resumo:
The atmospheric corrosion of modern and historic alloys used in cultural heritage has been investigated by applying specific accelerated ageing methods. Three main research lines were carried out, involving different materials. In the first part, the atmospheric corrosion of a modern Cu-3Si-1Mn bronze was investigated through accelerated ageing tests simulating outdoor runoff conditions. The corrosion processes were evaluated through different analyses, and the results obtained were compared to those of a traditional quaternary bronze. The second line was carried out to characterise historic aluminium alloys used in aeronautics to develop and apply innovative protection strategies for their conservation. Historic wrecks were identified and characterised through micro and macroscale observations. Moreover, accelerated ageing tests were performed on both historic and modern alloys to compare their behaviour and select the best modern substrate to be used for the development of effective coatings. The third research line aimed to develop accelerate sampling and ageing methods to investigate the role of particulate matter (PM) in the atmospheric corrosion of bronzes and metals in general. The first approach consisted in the fine-tuning of an efficient accelerated method for ambient PM sampling on bronze specimens followed by their accelerated ageing, in order to establish a correlation between the PM and the substrate’s corrosion. After the accelerated ageing of the specimens, the corrosion was evaluated by surface characterisation and correlated to the PM features. The second approach consisted in the development of a synthetic PM formulation and of an artificial deposition method, which was performed by spraying mixtures containing the main PM inorganic fractions on a G-85 bronze with an airbrush. The deposition efficiency was assessed, and the effect of synthetic PM on the bronze corrosion was evaluated. The results were compared to those obtained by ambient PM deposition.
Resumo:
In the Era of precision medicine and big medical data sharing, it is necessary to solve the work-flow of digital radiological big data in a productive and effective way. In particular, nowadays, it is possible to extract information “hidden” in digital images, in order to create diagnostic algorithms helping clinicians to set up more personalized therapies, which are in particular targets of modern oncological medicine. Digital images generated by the patient have a “texture” structure that is not visible but encrypted; it is “hidden” because it cannot be recognized by sight alone. Thanks to artificial intelligence, pre- and post-processing software and generation of mathematical calculation algorithms, we could perform a classification based on non-visible data contained in radiological images. Being able to calculate the volume of tissue body composition could lead to creating clasterized classes of patients inserted in standard morphological reference tables, based on human anatomy distinguished by gender and age, and maybe in future also by race. Furthermore, the branch of “morpho-radiology" is a useful modality to solve problems regarding personalized therapies, which is particularly needed in the oncological field. Actually oncological therapies are no longer based on generic drugs but on target personalized therapy. The lack of gender and age therapies table could be filled thanks to morpho-radiology data analysis application.