4 resultados para Anthropological missions

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the recent years TNFRSF13B coding variants have been implicated by clinical genetics studies in Common Variable Immunodeficiency (CVID), the most common clinically relevant primary immunodeficiency in individuals of European ancestry, but their functional effects in relation to the development of the disease have not been entirely established. To examine the potential contribution of such variants to CVID, the more comprehensive perspective of an evolutionary approach was applied in this study, underling the belief that evolutionary genetics methods can play a role in dissecting the origin, causes and diffusion of human diseases, representing a powerful tool also in human health research. For this purpose, TNFRSF13B coding region was sequenced in 451 healthy individuals belonging to 26 worldwide populations, in addition to 96 control, 77 CVID and 38 Selective IgA Deficiency (IgAD) individuals from Italy, leading to the first achievement of a global picture of TNFRSF13B nucleotide diversity and haplotype structure and making suggestion of its evolutionary history possible. A slow rate of evolution, within our species and when compared to the chimpanzee, low levels of genetic diversity geographical structure and the absence of recent population specific selective pressures were observed for the examined genomic region, suggesting that geographical distribution of its variability is more plausibly related to its involvement also in innate immunity rather than in adaptive immunity only. This, together with the extremely subtle disease/healthy samples differences observed, suggests that CVID might be more likely related to still unknown environmental and genetic factors, rather than to the nature of TNFRSF13B variants only.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The navigation of deep space spacecraft requires accurate measurement of the probe’s state and attitude with respect to a body whose ephemerides may not be known with good accuracy. The heliocentric state of the spacecraft is estimated through radiometric techniques (ranging, Doppler, and Delta-DOR), while optical observables can be introduced to improve the uncertainty in the relative position and attitude with respect to the target body. In this study, we analyze how simulated optical observables affect the estimation of parameters in an orbit determination problem, considering the case of the ESA’s Hera mission towards the binary asteroid system composed of Didymos and Dimorphos. To this extent, a shape model and a photometric function are used to create synthetic onboard camera images. Then, using a stereophotoclinometry technique on some of the simulated images, we create a database of maplets that describe the 3D geometry of the surface around a set of landmarks. The matching of maplets with the simulated images provides the optical observables, expressed as pixel coordinates in the camera frame, which are fed to an orbit determination filter to estimate a certain number of solve-for parameters. The noise introduced in the output optical observables by the image processing can be quantified using as a metric the quality of the residuals, which is used to fine-tune the maplet-matching parameters. In particular, the best results are obtained when using small maplets, with high correlation coefficients and occupation factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this dissertation is to describe the methodologies required to design, operate, and validate the performance of ground stations dedicated to near and deep space tracking, as well as the models developed to process the signals acquired, from raw data to the output parameters of the orbit determination of spacecraft. This work is framed in the context of lunar and planetary exploration missions by addressing the challenges in receiving and processing radiometric data for radio science investigations and navigation purposes. These challenges include the designing of an appropriate back-end to read, convert and store the antenna voltages, the definition of appropriate methodologies for pre-processing, calibration, and estimation of radiometric data for the extraction of information on the spacecraft state, and the definition and integration of accurate models of the spacecraft dynamics to evaluate the goodness of the recorded signals. Additionally, the experimental design of acquisition strategies to perform direct comparison between ground stations is described and discussed. In particular, the evaluation of the differential performance between stations requires the designing of a dedicated tracking campaign to maximize the overlap of the recorded datasets at the receivers, making it possible to correlate the received signals and isolate the contribution of the ground segment to the noise in the single link. Finally, in support of the methodologies and models presented, results from the validation and design work performed on the Deep Space Network (DSN) affiliated nodes DSS-69 and DSS-17 will also be reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seafood carries several contaminants, among which mercury and polycyclic aromatic hydrocarbons are those that cause major concern. Evidence exists that human populations are exposed to these environmental chemicals since ancient times, which may have driven the positive selection of specific genetic polymorphisms related to chemicals toxicokinetic. Both mercury and polycyclic aromatic hydrocarbons are able to cause DNA methylation changes in humans. Some Mediterranean populations may be particularly exposed to these contaminants, being the Mediterranean Sea at a high-risk for contamination by toxic compounds, and because of their traditionally high consumption of locally caught seafood. Starting from these premises the present thesis aims to contribute to the understanding of the molecular impact of seafood consumption on the biology of the Mediterranean population. To this end the work has been divided into four main parts: (1) the development and meta-analysis of a georeferenced database on polycyclic aromatic hydrocarbons in Mediterranean seafood aimed at identifying geographical patterns of contamination and trends that could be related to the biology of the marine organisms, to the physico-chemical properties of each hydrocarbon and to the oceanographic characteristic of the Mediterranean; (2) the development and validation of a food frequency questionnaire to estimate the intake of mercury through seafood consumption among a population living in a geographic area that is usually considered a contamination hotspot; (3) the creation of a biobank made of biological samples from members of several Italian communities together with information on their dietary habits, lifestyle and general health; (4) a review of the literature on the genetic component of individual susceptibility to methylmercury and polycyclic aromatic hydrocarbons exposure in humans, to the effects that these pollutants have on human DNA methylation, and to the evidence that Mediterranean coastal communities represent an informative case study to investigate the potential molecular impact of these chemicals.