10 resultados para Antenna measurements HFSS: 3D Electromagnetic simulator

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Ph.D. thesis describes the simulations of different microwave links from the transmitter to the receiver intermediate-frequency ports, by means of a rigorous circuit-level nonlinear analysis approach coupled with the electromagnetic characterization of the transmitter and receiver front ends. This includes a full electromagnetic computation of the radiated far field which is used to establish the connection between transmitter and receiver. Digitally modulated radio-frequency drive is treated by a modulation-oriented harmonic-balance method based on Krylov-subspace model-order reduction to allow the handling of large-size front ends. Different examples of links have been presented: an End-to-End link simulated by making use of an artificial neural network model; the latter allows a fast computation of the link itself when driven by long sequences of the order of millions of samples. In this way a meaningful evaluation of such link performance aspects as the bit error rate becomes possible at the circuit level. Subsequently, a work focused on the co-simulation an entire link including a realistic simulation of the radio channel has been presented. The channel has been characterized by means of a deterministic approach, such as Ray Tracing technique. Then, a 2x2 multiple-input multiple-output antenna link has been simulated; in this work near-field and far-field coupling between radiating elements, as well as the environment factors, has been rigorously taken into account. Finally, within the scope to simulate an entire ultra-wideband link, the transmitting side of an ultrawideband link has been designed, and an interesting Front-End co-design technique application has been setup.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this thesis was to study the effects of extremely low frequency (ELF) electromagnetic magnetic fields on potassium currents in neural cell lines ( Neuroblastoma SK-N-BE ), using the whole-cell Patch Clamp technique. Such technique is a sophisticated tool capable to investigate the electrophysiological activity at a single cell, and even at single channel level. The total potassium ion currents through the cell membrane was measured while exposing the cells to a combination of static (DC) and alternate (AC) magnetic fields according to the prediction of the so-called ‘ Ion Resonance Hypothesis ’. For this purpose we have designed and fabricated a magnetic field exposure system reaching a good compromise between magnetic field homogeneity and accessibility to the biological sample under the microscope. The magnetic field exposure system consists of three large orthogonal pairs of square coils surrounding the patch clamp set up and connected to the signal generation unit, able to generate different combinations of static and/or alternate magnetic fields. Such system was characterized in term of field distribution and uniformity through computation and direct field measurements. No statistically significant changes in the potassium ion currents through cell membrane were reveled when the cells were exposed to AC/DC magnetic field combination according to the afore mentioned ‘Ion Resonance Hypothesis’.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of the Ph.D. thesis is to put the basis of an all-embracing link analysis procedure that may form a general reference scheme for the future state-of-the-art of RF/microwave link design: it is basically meant as a circuit-level simulation of an entire radio link, with – generally multiple – transmitting and receiving antennas examined by EM analysis. In this way the influence of mutual couplings on the frequency-dependent near-field and far-field performance of each element is fully accounted for. The set of transmitters is treated as a unique nonlinear system loaded by the multiport antenna, and is analyzed by nonlinear circuit techniques. In order to establish the connection between transmitters and receivers, the far-fields incident onto the receivers are evaluated by EM analysis and are combined by extending an available Ray Tracing technique to the link study. EM theory is used to describe the receiving array as a linear active multiport network. Link performances in terms of bit error rate (BER) are eventually verified a posteriori by a fast system-level algorithm. In order to validate the proposed approach, four heterogeneous application contexts are provided. A complete MIMO link design in a realistic propagation scenario is meant to constitute the reference case study. The second one regards the design, optimization and testing of various typologies of rectennas for power generation by common RF sources. Finally, the project and implementation of two typologies of radio identification tags, at X-band and V-band respectively. In all the cases the importance of an exhaustive nonlinear/electromagnetic co-simulation and co-design is demonstrated to be essential for any accurate system performance prediction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, thanks to the technological advances, electromagnetic methods for non-invasive shallow subsurface characterization have been increasingly used in many areas of environmental and geoscience applications. Among all the geophysical electromagnetic methods, the Ground Penetrating Radar (GPR) has received unprecedented attention over the last few decades due to its capability to obtain, spatially and temporally, high-resolution electromagnetic parameter information thanks to its versatility, its handling, its non-invasive nature, its high resolving power, and its fast implementation. The main focus of this thesis is to perform a dielectric site characterization in an efficient and accurate way studying in-depth a physical phenomenon behind a recent developed GPR approach, the so-called early-time technique, which infers the electrical properties of the soil in the proximity of the antennas. In particular, the early-time approach is based on the amplitude analysis of the early-time portion of the GPR waveform using a fixed-offset ground-coupled antenna configuration where the separation between the transmitting and receiving antenna is on the order of the dominant pulse-wavelength. Amplitude information can be extracted from the early-time signal through complex trace analysis, computing the instantaneous-amplitude attributes over a selected time-duration of the early-time signal. Basically, if the acquired GPR signals are considered to represent the real part of a complex trace, and the imaginary part is the quadrature component obtained by applying a Hilbert transform to the GPR trace, the amplitude envelope is the absolute value of the resulting complex trace (also known as the instantaneous-amplitude). Analysing laboratory information, numerical simulations and natural field conditions, and summarising the overall results embodied in this thesis, it is possible to suggest the early-time GPR technique as an effective method to estimate physical properties of the soil in a fast and non-invasive way.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several countries have acquired, over the past decades, large amounts of area covering Airborne Electromagnetic data. Contribution of airborne geophysics has dramatically increased for both groundwater resource mapping and management proving how those systems are appropriate for large-scale and efficient groundwater surveying. We start with processing and inversion of two AEM dataset from two different systems collected over the Spiritwood Valley Aquifer area, Manitoba, Canada respectively, the AeroTEM III (commissioned by the Geological Survey of Canada in 2010) and the “Full waveform VTEM” dataset, collected and tested over the same survey area, during the fall 2011. We demonstrate that in the presence of multiple datasets, either AEM and ground data, due processing, inversion, post-processing, data integration and data calibration is the proper approach capable of providing reliable and consistent resistivity models. Our approach can be of interest to many end users, ranging from Geological Surveys, Universities to Private Companies, which are often proprietary of large geophysical databases to be interpreted for geological and\or hydrogeological purposes. In this study we deeply investigate the role of integration of several complimentary types of geophysical data collected over the same survey area. We show that data integration can improve inversions, reduce ambiguity and deliver high resolution results. We further attempt to use the final, most reliable output resistivity models as a solid basis for building a knowledge-driven 3D geological voxel-based model. A voxel approach allows a quantitative understanding of the hydrogeological setting of the area, and it can be further used to estimate the aquifers volumes (i.e. potential amount of groundwater resources) as well as hydrogeological flow model prediction. In addition, we investigated the impact of an AEM dataset towards hydrogeological mapping and 3D hydrogeological modeling, comparing it to having only a ground based TEM dataset and\or to having only boreholes data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have used kinematic models in two Italian regions to reproduce surface interseismic velocities obtained from InSAR and GPS measurements. We have considered a Block modeling, BM, approach to evaluate which fault system is actively accommodating the occurring deformation in both considered areas. We have performed a study for the Umbria-Marche Apennines, obtaining that the tectonic extension observed by GPS measurements is explained by the active contribution of at least two fault systems, one of which is the Alto Tiberina fault, ATF. We have estimated also the interseismic coupling distribution for the ATF using a 3D surface and the result shows an interesting correlation between the microseismicity and the uncoupled fault portions. The second area analyzed concerns the Gargano promontory for which we have used jointly the available InSAR and GPS velocities. Firstly we have attached the two datasets to the same terrestrial reference frame and then using a simple dislocation approach, we have estimated the best fault parameters reproducing the available data, providing a solution corresponding to the Mattinata fault. Subsequently we have considered within a BM analysis both GPS and InSAR datasets in order to evaluate if the Mattinata fault may accommodate the deformation occurring in the central Adriatic due to the relative motion between the North-Adriatic and South-Adriatic plates. We obtain that the deformation occurring in that region should be accommodated by more that one fault system, that is however difficult to detect since the poor coverage of geodetic measurement offshore of the Gargano promontory. Finally we have performed also the estimate of the interseismic coupling distribution for the Mattinata fault, obtaining a shallow coupling pattern. Both of coupling distributions found using the BM approach have been tested by means of resolution checkerboard tests and they demonstrate that the coupling patterns depend on the geodetic data positions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of my PhD thesis has been to face the issue of retrieving a three dimensional attenuation model in volcanic areas. To this purpose, I first elaborated a robust strategy for the analysis of seismic data. This was done by performing several synthetic tests to assess the applicability of spectral ratio method to our purposes. The results of the tests allowed us to conclude that: 1) spectral ratio method gives reliable differential attenuation (dt*) measurements in smooth velocity models; 2) short signal time window has to be chosen to perform spectral analysis; 3) the frequency range over which to compute spectral ratios greatly affects dt* measurements. Furthermore, a refined approach for the application of spectral ratio method has been developed and tested. Through this procedure, the effects caused by heterogeneities of propagation medium on the seismic signals may be removed. The tested data analysis technique was applied to the real active seismic SERAPIS database. It provided a dataset of dt* measurements which was used to obtain a three dimensional attenuation model of the shallowest part of Campi Flegrei caldera. Then, a linearized, iterative, damped attenuation tomography technique has been tested and applied to the selected dataset. The tomography, with a resolution of 0.5 km in the horizontal directions and 0.25 km in the vertical direction, allowed to image important features in the off-shore part of Campi Flegrei caldera. High QP bodies are immersed in a high attenuation body (Qp=30). The latter is well correlated with low Vp and high Vp/Vs values and it is interpreted as a saturated marine and volcanic sediments layer. High Qp anomalies, instead, are interpreted as the effects either of cooled lava bodies or of a CO2 reservoir. A pseudo-circular high Qp anomaly was detected and interpreted as the buried rim of NYT caldera.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work illustrates a soil-tunnel-structure interaction study performed by an integrated,geotechnical and structural,approach based on 3D finite element analyses and validated against experimental observations.The study aims at analysing the response of reinforced concrete framed buildings on discrete foundations in interaction with metro lines.It refers to the case of the twin tunnels of the Milan (Italy) metro line 5,recently built in coarse grained materials using EPB machines,for which subsidence measurements collected along ground and building sections during tunnelling were available.Settlements measured under freefield conditions are firstly back interpreted using Gaussian empirical predictions. Then,the in situ measurements’ analysis is extended to include the evolving response of a 9 storey reinforced concrete building while being undercrossed by the metro line.In the finite element study,the soil mechanical behaviour is described using an advanced constitutive model. This latter,when combined with a proper simulation of the excavation process, proves to realistically reproduce the subsidence profiles under free field conditions and to capture the interaction phenomena occurring between the twin tunnels during the excavation. Furthermore, when the numerical model is extended to include the building, schematised in a detailed manner, the results are in good agreement with the monitoring data for different stages of the twin tunnelling. Thus, they indirectly confirm the satisfactory performance of the adopted numerical approach which also allows a direct evaluation of the structural response as an outcome of the analysis. Further analyses are also carried out modelling the building with different levels of detail. The results highlight that, in this case, the simplified approach based on the equivalent plate schematisation is inadequate to capture the real tunnelling induced displacement field. The overall behaviour of the system proves to be mainly influenced by the buried portion of the building which plays an essential role in the interaction mechanism, due to its high stiffness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The presented Thesis describes the design of RF-energy harvesting systems with applications on different environments, from the biomedical side to the industrial one, tackling the common thread problem which is the design of complete energy autonomous tags each of them with its dedicated purpose. This Thesis gathers a work of three years in the field of energy harvesting system design, a combination of full-wave electromagnetic designs to optimize not only the antenna performance but also to fulfill the requirements given by each case study such as dimensions, insensitivity from the surrounding environment, flexibility and compliance with regulations. The research activity has been based on the development of highly-demanded ideas and real-case necessities which are in line with the environment in which modern IoT applications can really make a positive contribution. The Thesis is organized as follows: the first application, described in Chapter 2, regards the design and experimental validations of a rotation-insensitive WPT system for implantable devices. Chapter 3 presents the design of a wearable energy autonomous detector to identify the presence of ethanol on the body surface. Chapter 4 describes investigations in the use of Bessel Beam launchers for creating a highly-focused energy harvesting link for wearable applications. Reduced dimensions, high focusing and decoupling from the human body are the key points to be addressed during the full-wave design and nonlinear optimization of the receiver antenna. Finally, Chapter 5 presents an energy autonomous system exploiting LoRa (Long Range) nodes for tracking trailers in industrial plants. The novelty behind this design lies on the aim of obtaining a perfectly scalable system that exploits not only EH basic operating system but embeds a seamless solution for collecting a certain amount of power that varies with respect the received power level on the antenna, without the need of additional off-the-shelf components.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, the focus is on utilizing metasurfaces to improve radiation characteristics of planar structures. The study encompasses various aspects of metasurface applications, including enhancing antenna radiation characteristics and manipulating electromagnetic (EM) waves, such as polarization conversion and anomalous reflection. The thesis introduces the design of a single-port antenna with dual-mode operation, integrating metasurfaces. This antenna serves as the front-end for a next-generation tag, functioning as a position sensor with identification and energy harvesting capabilities. It operates in the lower European Ultra-Wideband (UWB) frequency range for communication/localization and the UHF band for wireless energy reception. The design aims for a low-profile stack-up that remains unaffected by background materials. Researchers worldwide are drawn to metasurfaces due to their EM wave manipulation capabilities. The thesis also demonstrates how a High-Impedance Surface (HIS) can enhance the antenna's versatility through metasurface application, including conformal design using 3D-printing technology, ensuring adaptability for various deformation and tracking/powering scenarios. Additionally, the thesis explores two distinct metasurface applications. One involves designing an angularly stable super-wideband Circular Polarization Converter (CPC) operating from 11 to 35GHz with an impressive relative impedance bandwidth of 104.3%. The CPC shows a stable response even at oblique incidences up to 40 degrees, with a Peak Cross-Polarization Ratio (PCR) exceeding 62% across the entire band. The second application focuses on an Intelligent Reflective Surface (IRS) capable of redirecting incoming waves in unconventional directions. Tunability is achieved through an artificially developed ferroelectric material (HfZrO) and distributed capacitive elements (IDC) to fine-tune impedance and phase responses at the meta-atom level. The IRS demonstrates anomalous reflection for normal incident waves. These innovative applications of metasurfaces offer promising advancements in antenna design, EM wave manipulation, and versatile wireless communication systems.