2 resultados para Anoxia perinatal
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Tumours are characterized by a metabolic rewiring that helps transformed cells to survive in harsh conditions. The endogenous inhibitor of the ATP-synthase IF1 is overexpressed in several tumours and it has been proposed to drive metabolic adaptation. In ischemic normal-cells, IF1 acts limiting the ATP consumption by the reverse activity of the ATP-synthase, activated by ΔΨm collapse. Conversely, IF1 role in cancer cells is still unclear. It has been proposed that IF1 favours cancer survival by preventing energy dissipation in low oxygen availability, a frequent condition in solid tumours. Our previous data proved that in cancer cells hypoxia does not abolish ΔΨm, avoiding the ATP-synthase reversal and IF1 activation. In this study, we investigated the bioenergetics of cancer cells in conditions mimicking anoxia to evaluate the possible role of IF1. Data obtained indicate that also in cancer cells the ΔΨm collapse induces the ATP-synthase reversal and its inhibition by IF1. Moreover, we demonstrated that upon uncoupling conditions, IF1 favours cancer cells growth preserving ATP levels and energy charge. We also showed that in these conditions IF1 favours the mitochondrial mass renewal, a mechanism we proposed driving apoptosis-resistance. Cancer adaptability is also associated with the onset of therapy resistance, the major challenge for melanoma treatment. Recent studies demonstrated that miRNAs dysregulation drive melanoma progression and drug-resistance by regulating tumour-suppressor and oncogenes. In this context, we attempted to identify and characterize miRNAs driving resistance to vemurafenib in patient-derived metastatic melanoma cells BRAFV600E-mutated. Our results highlighted that several oncogenic pathways are altered in resistant cells, indicating the complexity of both drug-resistance phenomena and miRNAs action. Profiling analysis identified a group of dysregulated miRNAs conserved in vemurafenib-resistance cells from distinct patients, suggesting that they ubiquitously drive drug-resistance. Functional studies performed with a first miRNA confirmed its pivotal role in resistance towards vemurafenib.
Resumo:
Part 1 of the study aims to: evaluate NGF and VEGF levels obtained at parturition from mare, foal and umbilical cord vein plasma, as well as in amniotic fluid; evaluate NGF and VEGF content in plasma of healthy foals during the first 72 h of life; evaluate NGF and VEGF levels at parturition in relation to selected mares’ and foals’ clinical parameters; evaluate the relationship between the two trophic factors and thyroid hormone levels in the first 72 h of life; assess mRNA expression of NGF, VEGF and BDNF and their cell surface receptors in the placenta. Part 2 aims to clinically characterize a population of foals spontaneously affected by Neonatal Encephalopathy (NE), and then to: evaluate NGF and VEGF levels in plasma samples obtained in the affected population at parturition from mare’s jugular vein, umbilical cord vein and foal’s jugular vein, as well as in amniotic fluid; evaluate NGF and VEGF content in plasma of foals affected by NE during the first 72 h of life/hospitalization; evaluate NGF and VEGF levels at birth/admission in relation to selected mares’ and foals’ clinical parameters; evaluate the relationship between the two trophic factors and thyroid hormone levels in the first 72 h of life/hospitalization; assess the mRNA expression of NGF, VEGF and BDNF, and their cell surface receptors, in the placenta of mares that delivered affected foals. The close relationship between the two trophic factors in foal plasma over time and their fine expression in placental tissues under physiological conditions appear to be key regulators of fetal development and adaptation. Their less pronounced decrease in compromised foals compared to healthy ones, their relationship with thyroid hormones over time, and the reduced expression of NGF and BDNF in placental tissues, could be key regulators in the mechanisms of NE.