2 resultados para Anisotropic Substrate
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Ancient pavements are composed of a variety of preparatory or foundation layers constituting the substrate, and of a layer of tesserae, pebbles or marble slabs forming the surface of the floor. In other cases, the surface consists of a mortar layer beaten and polished. The term mosaic is associated with the presence of tesserae or pebbles, while the more general term pavement is used in all the cases. As past and modern excavations of ancient pavements demonstrated, all pavements do not necessarily display the stratigraphy of the substrate described in the ancient literary sources. In fact, the number and thickness of the preparatory layers, as well as the nature and the properties of their constituent materials, are often varying in pavements which are placed either in different sites or in different buildings within a same site or even in a same building. For such a reason, an investigation that takes account of the whole structure of the pavement is important when studying the archaeological context of the site where it is placed, when designing materials to be used for its maintenance and restoration, when documenting it and when presenting it to public. Five case studies represented by archaeological sites containing floor mosaics and other kind of pavements, dated to the Hellenistic and the Roman period, have been investigated by means of in situ and laboratory analyses. The results indicated that the characteristics of the studied pavements, namely the number and the thickness of the preparatory layers, and the properties of the mortars constituting them, vary according to the ancient use of the room where the pavements are placed and to the type of surface upon which they were built. The study contributed to the understanding of the function and the technology of the pavementsâ substrate and to the characterization of its constituent materials. Furthermore, the research underlined the importance of the investigation of the whole structure of the pavement, included the foundation surface, in the interpretation of the archaeological context where it is located. A series of practical applications of the results of the research, in the designing of repair mortars for pavements, in the documentation of ancient pavements in the conservation practice, and in the presentation to public in situ and in museums of ancient pavements, have been suggested.
Resumo:
We have modeled various soft-matter systems with molecular dynamics (MD) simulations. The first topic concerns liquid crystal (LC) biaxial nematic (Nb) phases, that can be possibly used in fast displays. We have investigated the phase organization of biaxial Gay-Berne (GB) mesogens, considering the effects of the orientation, strength and position of a molecular dipole. We have observed that for systems with a central dipole, nematic biaxial phases disappear when increasing dipole strength, while for systems characterized by an offset dipole, the Nb phase is stabilized at very low temperatures. In a second project, in view of their increasing importance as nanomaterials in LC phases, we are developing a DNA coarse-grained (CG) model, in which sugar and phosphate groups are represented with Lennard-Jones spheres, while bases with GB ellipsoids. We have obtained shape, position and orientation parameters for each bead, to best reproduce the atomistic structure of a B-DNA helix. Starting from atomistic simulations results, we have completed a first parametrization of the force field terms, accounting for bonded (bonds, angles and dihedrals) and non-bonded interactions (H-bond and stacking). We are currently validating the model, by investigating stability and melting temperature of various sequences. Finally, in a third project, we aim to explain the mechanism of enantiomeric discrimination due to the presence of a chiral helix of poly(gamma-benzyl L-glutamate) (PBLG), in solution of dimethylformamide (DMF), interacting with chiral or pro-chiral molecules (in our case heptyl butyrate, HEP), after tuning properly an atomistic force field (AMBER). We have observed that DMF and HEP molecules solvate uniformly the PBLG helix, but the pro-chiral solute is on average found closer to the helix with respect to the DMF. The solvent presents a faster isotropic diffusion, twice as HEP, also indicating a stronger interaction of the solute with the helix.