15 resultados para Animal demography
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Lipolysis and oxidation of lipids in foods are the major biochemical and chemical processes that cause food quality deterioration, leading to the characteristic, unpalatable odour and flavour called rancidity. In addition to unpalatability, rancidity may give rise to toxic levels of certain compounds like aldehydes, hydroperoxides, epoxides and cholesterol oxidation products. In this PhD study chromatographic and spectroscopic techniques were employed to determine the degree of rancidity in different animal products and its relationship with technological parameters like feeding fat sources, packaging, processing and storage conditions. To achieve this goal capillary gas chromatography (CGC) was employed not only to determine the fatty acids profile but also, after solid phase extraction, the amount of free fatty acids (FFA), diglycerides (DG), sterols (cholesterol and phytosterols) and cholesterol oxidation products (COPs). To determine hydroperoxides, primary products of oxidation and quantify secondary products UV/VIS absorbance spectroscopy was applied. Most of the foods analysed in this study were meat products. In actual fact, lipid oxidation is a major deterioration reaction in meat and meat products and results in adverse changes in the colour, flavour and texture of meat. The development of rancidity has long recognized as a serious problem during meat handling, storage and processing. On a dairy product, a vegetal cream, a study of lipid fraction and development of rancidity during storage was carried out to evaluate its shelf-life and some nutritional features life saturated/unsaturated fatty acids ratio and phytosterols content. Then, according to the interest that has been growing around functional food in the last years, a new electrophoretic method was optimized and compared with HPLC to check the quality of a beehive product like royal jelly. This manuscript reports the main results obtained in the five activities briefly summarized as follows: 1) comparison between HPLC and a new electrophoretic method in the evaluation of authenticity of royal jelly; 2) study of the lipid fraction of a vegetal cream under different storage conditions; 3) study of lipid oxidation in minced beef during storage under a modified atmosphere packaging, before and after cooking; 4) evaluation of the influence of dietary fat and processing on the lipid fraction of chicken patties; 5) study of the lipid fraction of typical Italian and Spanish pork dry sausages and cured hams.
Resumo:
Advances in stem cell biology have challenged the notion that infarcted myocardium is irreparable. The pluripotent ability of stem cells to differentiate into specialized cell lines began to garner intense interest within cardiology when it was shown in animal models that intramyocardial injection of bone marrow stem cells (MSCs), or the mobilization of bone marrow stem cells with spontaneous homing to myocardium, could improve cardiac function and survival after induced myocardial infarction (MI) [1, 2]. Furthermore, the existence of stem cells in myocardium has been identified in animal heart [3, 4], and intense research is under way in an attempt to clarify their potential clinical application for patients with myocardial infarction. To date, in order to identify the best one, different kinds of stem cells have been studied; these have been derived from embryo or adult tissues (i.e. bone marrow, heart, peripheral blood etc.). Currently, three different biologic therapies for cardiovascular diseases are under investigation: cell therapy, gene therapy and the more recent “tissue-engineering” therapy . During my Ph.D. course, first I focalised my study on the isolation and characterization of Cardiac Stem Cells (CSCs) in wild-type and transgenic mice and for this purpose I attended, for more than one year, the Cardiovascular Research Institute of the New York Medical College, in Valhalla (NY, USA) under the direction of Doctor Piero Anversa. During this period I learnt different Immunohistochemical and Biomolecular techniques, useful for investigating the regenerative potential of stem cells. Then, during the next two years, I studied the new approach of cardiac regenerative medicine based on “tissue-engineering” in order to investigate a new strategy to regenerate the infracted myocardium. Tissue-engineering is a promising approach that makes possible the creation of new functional tissue to replace lost or failing tissue. This new discipline combines isolated functioning cells and biodegradable 3-dimensional (3D) polymeric scaffolds. The scaffold temporarily provides the biomechanical support for the cells until they produce their own extracellular matrix. Because tissue-engineering constructs contain living cells, they may have the potential for growth and cellular self-repair and remodeling. In the present study, I examined whether the tissue-engineering strategy within hyaluron-based scaffolds would result in the formation of alternative cardiac tissue that could replace the scar and improve cardiac function after MI in syngeneic heterotopic rat hearts. Rat hearts were explanted, subjected to left coronary descending artery occlusion, and then grafted into the abdomen (aorta-aorta anastomosis) of receiving syngeneic rat. After 2 weeks, a pouch of 3 mm2 was made in the thickness of the ventricular wall at the level of the post-infarction scar. The hyaluronic scaffold, previously engineered for 3 weeks with rat MSCs, was introduced into the pouch and the myocardial edges sutured with few stitches. Two weeks later we evaluated the cardiac function by M-Mode echocardiography and the myocardial morphology by microscope analysis. We chose bone marrow-derived mensenchymal stem cells (MSCs) because they have shown great signaling and regenerative properties when delivered to heart tissue following a myocardial infarction (MI). However, while the object of cell transplantation is to improve ventricular function, cardiac cell transplantation has had limited success because of poor graft viability and low cell retention, that’s why we decided to combine MSCs with a biopolimeric scaffold. At the end of the experiments we observed that the hyaluronan fibres had not been substantially degraded 2 weeks after heart-transplantation. Most MSCs had migrated to the surrounding infarcted area where they were especially found close to small-sized vessels. Scar tissue was moderated in the engrafted region and the thickness of the corresponding ventricular wall was comparable to that of the non-infarcted remote area. Also, the left ventricular shortening fraction, evaluated by M-Mode echocardiography, was found a little bit increased when compared to that measured just before construct transplantation. Therefore, this study suggests that post-infarction myocardial remodelling can be favourably affected by the grafting of MSCs delivered through a hyaluron-based scaffold
Resumo:
The aim of the first part of this thesis was to evaluate the effect of trans fatty acid- (TFA), contaminant, polycyclic aromatic hydrocarbon (PAH)- and oxidation productenriched diets on the content of TFA and conjugated linoleic acid (CLA) isomers in meat and liver of both poultry and rabbit. The enriched feedings were prepared with preselected fatty co-and by-products that contained low and high levels of TFA (low, palm fatty acid distillate; high, hydrogenated palm fatty acid distillate), environmental contaminants (dioxins and PCBs) (two different fish oils), PAH (olive oil acid oils and pomace olive oil from chemical refining, for low and high levels) and oxidation products (sunflower-olive oil blend before and after frying), so as to obtain single feedings with three enrichment degrees (high, medium and low) of the compound of interest. This experimental set-up is a part of a large, collaborative European project (http://www.ub.edu/feedfat/), where other chemical and health parameters are assessed. Lipids were extracted, methylated with diazomethane, then transmethylated with 2N KOH/methanol and analyzed by GC and silver-ion TLC-GC. TFA and CLA were determined in the fats, the feedings, meat and liver of both poultry and rabbit. In general, the level of TFA and CLA in meat and liver mainly varied according to those originally found in the feeding fats. It must be pointed out, though, that TFA and CLA accumulation was different for the two animal species, as well as for the two types of tissues. The TFA composition of meat and liver changes according to the composition of the oils added to the feeds with some differences between species. Chicken meat with skin shows higher TFA content (2.6–5.4 fold) than rabbit meat, except for the “PAH” trial. Chicken liver shows higher TFA content (1.2–2.1 fold) than rabbit liver, except for the “TRANS” and “PAH” trials. In both chicken and rabbit meats, the TFA content was higher for the “TRANS” trial, followed by the “DIOXIN” trial. Slight differences were found on the “OXIDATION” and “PAH” trends in both types of meats. In both chicken and rabbit livers, the TFA content was higher for the “TRANS” trial, followed by those of the “PAH”, “DIOXIN” and “OXIDATION” trials. This trend, however, was not identical to that of feeds, where the TFA content varied as follows: “TRANS” > “DIOXIN” >“PAH” > “OXIDATION”. In chicken and rabbit meat samples, C18:1 TFA were the most abundant, followed by C18:2 TFA and C18:3 TFA, except for the “DIOXIN” trial where C18:3 TFA > C18:2 TFA. In chicken and rabbit liver samples of the “TRANS” and “OXIDATION” trials, C18:1 TFA were the most abundant, followed by C18:2 TFA and C18:3 TFA, whereas C18:3 TFA > C18:2 in the “DIOXIN” trial. Slight differences were found on the “PAH” trend in livers from both species. The second part of the thesis dealt with the study of lipid oxidation in washed turkey muscle added with different antioxidants. The evaluation on the oxidative stability of muscle foods found that oxidation could be measured by headspace solid phase microestraction (SPME) of hexanal and propanal. To make this method effective, an antioxidant system was added to stored muscle to stop the oxidative processes. An increase in ionic strength of the sample was also implemented to increase the concentration of aldehydes in the headspace. This method was found to be more sensitive than the commonly used thiobarbituric acid reactive substances (TBARs) method. However, after antioxidants were added and oxidation was stopped, the concentration of aldehydes decreased. It was found that the decrease in aldehyde concentration was due to the binding of the aldehydes to muscle proteins, thus decreasing the volatility and making them less detectable.
Resumo:
This PhD thesis describes the application of some instrumental analytical techniques suitable to the study of fundamental food products for the human diet, such as: extra virgin olive oil and dairy products. These products, widely spread in the market and with high nutritional values, are increasingly recognized healthy properties although their lipid fraction might contain some unfavorable components to the human health. The research activity has been structured in the following investigations: “Comparison of different techniques for trans fatty acids analysis” “Fatty acids analysis of outcrop milk cream samples, with particular emphasis on the content of Conjugated Linoleic Acid (CLA) and trans Fatty Acids (TFA), by using 100m high-polarity capillary column” “Evaluation of the oxidited fatty acids (OFA) content during the Parmigiano-Reggiano cheese seasoning” “Direct analysis of 4-desmethyl sterols and two dihydroxy triterpenes in saponified vegetal oils (olive oil and others) using liquid chromatography-mass spectrometry” “Quantitation of long chain poly-unsatured fatty acids (LC-PUFA) in base infant formulas by Gas Chromatography, and evaluation of the blending phases accuracy during their preparation” “Fatty acids composition of Parmigiano Reggiano cheese samples, with emphasis on trans isomers (TFA)”
Resumo:
Some fundamental biological processes such as embryonic development have been preserved during evolution and are common to species belonging to different phylogenetic positions, but are nowadays largely unknown. The understanding of cell morphodynamics leading to the formation of organized spatial distribution of cells such as tissues and organs can be achieved through the reconstruction of cells shape and position during the development of a live animal embryo. We design in this work a chain of image processing methods to automatically segment and track cells nuclei and membranes during the development of a zebrafish embryo, which has been largely validates as model organism to understand vertebrate development, gene function and healingrepair mechanisms in vertebrates. The embryo is previously labeled through the ubiquitous expression of fluorescent proteins addressed to cells nuclei and membranes, and temporal sequences of volumetric images are acquired with laser scanning microscopy. Cells position is detected by processing nuclei images either through the generalized form of the Hough transform or identifying nuclei position with local maxima after a smoothing preprocessing step. Membranes and nuclei shapes are reconstructed by using PDEs based variational techniques such as the Subjective Surfaces and the Chan Vese method. Cells tracking is performed by combining informations previously detected on cells shape and position with biological regularization constraints. Our results are manually validated and reconstruct the formation of zebrafish brain at 7-8 somite stage with all the cells tracked starting from late sphere stage with less than 2% error for at least 6 hours. Our reconstruction opens the way to a systematic investigation of cellular behaviors, of clonal origin and clonal complexity of brain organs, as well as the contribution of cell proliferation modes and cell movements to the formation of local patterns and morphogenetic fields.
Resumo:
Lipolysis and oxidation of lipids in foods are the major biochemical and chemical processes that cause food quality deterioration, leading to the characteristic, unpalatable odour and flavour called rancidity. In addition to unpalatability, rancidity may give rise to toxic levels of certain compounds like aldehydes, hydroperoxides, epoxides and cholesterol oxidation products. In this PhD study chromatographic and spectroscopic techniques were employed to determine the degree of lipid oxidation in different animal products and its relationship with technological parameters like feeding fat sources, packaging, processing and storage conditions. To achieve this goal capillary gas chromatography (CGC) was employed not only to determine the fatty acids profile but also, after solid phase extraction, the amount of sterols (cholesterol and phytosterols) and cholesterol oxidation products (COPs). To determine hydroperoxides, primary products of oxidation and quantify secondary products UV/VIS absorbance spectroscopy was applied. Beef and pork meat in this study were analysed. In actual fact, lipid oxidation is a major deterioration reaction in meat, meat products and results in adverse changes in the colour, flavour, texture of meat and develops different compounds which should be a risk to human health as oxysterols. On beef and pork meat, a study of lipid fraction during storage was carried out to evaluate its shelf-life and some nutritional features life saturated/unsaturated fatty acids ratio and sterols content, in according to the interest that has been growing around functional food in the last years. The last part of this research was focused on the study of lipid oxidation in emulsions. In oil-in-water emulsions antioxidant activity of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) was evaluated. The rates of lipid oxidation of 1.0% stripped soybean oil-in-water emulsions with DOPC were followed by monitoring lipid hydroperoxide and hexanal as indicators of primary and secondary oxidation products and the droplet surface charge or zeta potential (ζ) of the emulsions with varying concentrations of DOPC were tested. This manuscript reports the main results obtained in the three activities briefly summarized as follows: 1. study on effects of feeding composition on the photoxidative stability of lipids from beef meat, evaluated during storage under commercial retail conditions; 2. evaluation of effects of diets and storage conditions on the oxidative stability of pork meat lipids; 3. study on oxidative behavior of DOPC in stripped soybean oil-in-water emulsions stabilized by nonionic surfactant.
Resumo:
Background and aims: Sorafenib is the reference therapy for advanced Hepatocellular Carcinoma (HCC). No method exists to predict in the very early period subsequent individual response. Starting from the clinical experience in humans that subcutaneous metastases may rapidly change consistency under sorafenib and that elastosonography a new ultrasound based technique allows assessment of tissue stiffness, we investigated the role of elastonography in the very early prediction of tumor response to sorafenib in a HCC animal model. Methods: HCC (Huh7 cells) subcutaneous xenografting in mice was utilized. Mice were randomized to vehicle or treatment with sorafenib when tumor size was 5-10 mm. Elastosonography (Mylab 70XVG, Esaote, Genova, Italy) of the whole tumor mass on a sagittal plane with a 10 MHz linear transducer was performed at different time points from treatment start (day 0, +2, +4, +7 and +14) until mice were sacrified (day +14), with the operator blind to treatment. In order to overcome variability in absolute elasticity measurement when assessing changes over time, values were expressed in arbitrary units as relative stiffness of the tumor tissue in comparison to the stiffness of a standard reference stand-off pad lying on the skin over the tumor. Results: Sor-treated mice showed a smaller tumor size increase at day +14 in comparison to vehicle-treated (tumor volume increase +192.76% vs +747.56%, p=0.06). Among Sor-treated tumors, 6 mice showed a better response to treatment than the other 4 (increase in volume +177% vs +553%, p=0.011). At day +2, median tumor elasticity increased in Sor-treated group (+6.69%, range –30.17-+58.51%), while decreased in the vehicle group (-3.19%, range –53.32-+37.94%) leading to a significant difference in absolute values (p=0.034). From this time point onward, elasticity decreased in both groups, with similar speed over time, not being statistically different anymore. In Sor-treated mice all 6 best responders at day 14 showed an increase in elasticity at day +2 (ranging from +3.30% to +58.51%) in comparison to baseline, whereas 3 of the 4 poorer responders showed a decrease. Interestingly, these 3 tumours showed elasticity values higher than responder tumours at day 0. Conclusions: Elastosonography appears a promising non-invasive new technique for the early prediction of HCC tumor response to sorafenib. Indeed, we proved that responder tumours are characterized by an early increase in elasticity. The possibility to distinguish a priori between responders and non responders based on the higher elasticity of the latter needs to be validated in ad-hoc experiments as well as a confirmation of our results in humans is warranted.
Resumo:
Mental retardation in Down syndrome (DS) has been imputed to the decreased brain volume, which is evident starting from the early phases of development. Recent studies in a widely used mouse model of DS, the Ts65Dn mouse, have shown that neurogenesis is severely impaired during the early phases of brain development, suggesting that this defect may be a major determinant of brain hypotrophy and mental retardation in individuals with DS. Recently, it has been found that in the cerebellum of Ts65Dn mice there is a defective responsiveness to Sonic Hedgehog (Shh), a potent mitogen that controls cell division during brain development, suggesting that failure of Shh signaling may underlie the reduced proliferation potency in DS. Based on these premises, we sought to identify the molecular mechanisms underlying derangement of the Shh pathway in neural precursor cells (NPCs) from Ts65Dn mice. We found that the expression levels of the Shh receptor Patched1 (Ptch1) were increased compared to controls both at the RNA and protein level. Partial silencing of Ptch1 expression in trisomic NPCs restored cell proliferation, indicating that proliferation impairment was due to Ptch1 overexpression. We further found that the overexpression of Ptch1 in trisomic NPCs is related to increased levels of AICD, a transcription-promoting fragment of amyloid precursor protein (APP). Increased AICD binding to the Ptch1 promoter favored its acetylated status, thus enhancing Ptch1 expression. Taken together, these data provide novel evidence that Ptch1 over expression underlies derangement of the Shh pathway in trisomic NPCs, with consequent proliferation impairment. The demonstration that Ptch1 over expression in trisomic NPCs is due to an APP fragment provides a link between this trisomic gene and the defective neuronal production that characterizes the DS brain.
Resumo:
The present dissertation collects the results of three different research trials which have the common aim to understand the effects of swine welfare (both at farm level and during transport) on the main fresh and dry-cured meat characteristics. The first trial was carried out in order to compare the effects of illumination regimes differing in light duration or light intensity on meat and ham quality of Italian heavy pigs. The results of this trial support the conclusion that, within a moderate range of light intensity and given an appropriate dark period for animal rest, an increase of light duration or intensity above the minimum mandatory levels has no negative impact on carcass composition, meat or long-cured hams quality. The second trial was designed with the aim to investigate the effects of water restriction on growth traits, animal welfare and meat and ham quality of liquid-fed heavy pigs. Overall, the parameters analyzed as concerns growth rate, behavioural traits, blood, as well as carcass, fresh meat and cured hams quality were not affected by the absence of fresh drinking water. However, since liquid feeding did not suppress drinker use or drinker manipulation in the experimental groups, water restriction does not appear to be an applicable method to obtain a reduction of water waste. The third trial, which was carried out in Canada, tested the effectiveness of water sprinkling market-weight pigs (115±10Kg BW) before and after transport in reducing the heat stress experienced under commercial transport conditions. Our results show that the water sprinkling protocol proposed may reduce heat stress during transport and improve pork quality, particularly in specific trailer compartments. This body of research supports the general conclusion that swine welfare could be improved in different scenarios through simple and cost-effective means, without negatively affecting the quality of the main animal-derived products.
Resumo:
This research work is aimed at the valorization of two types of pomace deriving from the extra virgin olive oil mechanical extraction process, such as olive pomace and a new by-product named “paté”, in the livestock sector as important sources of antioxidants and unsaturated fatty acids. In the first research the suitability of dried stoned olive pomace as a dietary supplement for dairy buffaloes was evaluated. The effectiveness of this utilization in modifying fatty acid composition and improving the oxidative stability of buffalo milk and mozzarella cheese have been proven by means of the analysis of qualitative and quantitative parameters. In the second research the use of paté as a new by-product in dietary feed supplementation for dairy ewes, already fed with a source of unsaturated fatty acids such as extruded linseed, was studied in order to assess the effect of this combination on the dairy products obtained. The characterization of paté as a new by-product was also carried out, studying the optimal conditions of its stabilization and preservation at the same time. The main results, common to both researches, have been the detection and the characterization of hydrophilic phenols in the milk. The analytical detection of hydroxytyrosol and tyrosol in the ewes’ milk fed with the paté and hydroxytyrosol in buffalo fed with pomace showed for the first time the presence in the milk of hydroxytyrosol, which is one of the most important bioactive compounds of the oil industry products; the transfer of these antioxidants and the proven improvement of the quality of milk fat could positively interact in the prevention of some human cardiovascular diseases and some tumours, increasing in this manner the quality of dairy products, also improving their shelf-life. These results also provide important information on the bioavailability of these phenolic compounds.
Resumo:
Nowadays it is requested more investigations on alternative rearing systems that are able to improve poultry welfare and to warrant high-quality and safe meat products. This thesis work was focused on the evaluation of the oxidative stability of poultry meats, obtained with different rearing systems, diets (supplemented with bioactive compounds), and packaging conditions. The thesis work was divided into the following parts: - Evaluation of the effects of different rearing systems on the quality, fatty acid composition and oxidative stability of poultry thigh and breast meat belonging to different product categories (“rotisserie” and “cut-up” carcasses); - Evaluation of the effects of different rearing systems and packaging conditions on the shelf-life of poultry thigh meat stored at 4°C for 14 days, and the effects of feed supplementation with thymol (control diet and diet with 2 different concentration of thymol) and packaging conditions on lipid oxidation of poultry thigh meat shelf-life (stored at 4°C for 14 days). The oxidative stability of poultry meat was studied by means of the spectrophotometric determinations of peroxide value and thiobarbituric acid reactive substances. - Evaluation of anti-inflammatory effects of different flavonoids (thymol, luteolin, tangeretin, sulforaphane, polymethoxyflavones, curcumin derivates) to detect their biological activity in LPS-stimulated RAW 264.7 macrophage cells in vitro, in order to study more in depth their action mechanisms. It was evaluated the cell vitality (MTT assay), nitrite concentration and protein profile. The study was focused on the identification of potential dietary bioactive compounds in order to investigate their biological activity and possible synergic effects, and to develop new suitable strategies for long-term promotion of human health, in particular against cancer.
Resumo:
The physico-chemical characterization, structure-pharmacokinetic and metabolism studies of new semi synthetic analogues of natural bile acids (BAs) drug candidates have been performed. Recent studies discovered a role of BAs as agonists of FXR and TGR5 receptor, thus opening new therapeutic target for the treatment of liver diseases or metabolic disorders. Up to twenty new semisynthetic analogues have been synthesized and studied in order to find promising novel drugs candidates. In order to define the BAs structure-activity relationship, their main physico-chemical properties (solubility, detergency, lipophilicity and affinity with serum albumin) have been measured with validated analytical methodologies. Their metabolism and biodistribution has been studied in “bile fistula rat”, model where each BA is acutely administered through duodenal and femoral infusion and bile collected at different time interval allowing to define the relationship between structure and intestinal absorption and hepatic uptake ,metabolism and systemic spill-over. One of the studied analogues, 6α-ethyl-3α7α-dihydroxy-5β-cholanic acid, analogue of CDCA (INT 747, Obeticholic Acid (OCA)), recently under approval for the treatment of cholestatic liver diseases, requires additional studies to ensure its safety and lack of toxicity when administered to patients with a strong liver impairment. For this purpose, CCl4 inhalation to rat causing hepatic decompensation (cirrhosis) animal model has been developed and used to define the difference of OCA biodistribution in respect to control animals trying to define whether peripheral tissues might be also exposed as a result of toxic plasma levels of OCA, evaluating also the endogenous BAs biodistribution. An accurate and sensitive HPLC-ES-MS/MS method is developed to identify and quantify all BAs in biological matrices (bile, plasma, urine, liver, kidney, intestinal content and tissue) for which a sample pretreatment have been optimized.
Resumo:
Since the publication of the book of Russell and Burch in 1959, scientific research has never stopped improving itself with regard to the important issue of animal experimentation. The European Directive 2010/63/EU “On the protection of animals used for scientific purposes” focuses mainly on the animal welfare, fixing the Russell and Burch’s 3Rs principles as the foundations of the document. In particular, the legislator clearly states the responsibility of the scientific community to improve the number of alternative methods to animal experimentation. The swine is considered a species of relevant interest for translational research and medicine due to its biological similarities with humans. The surgical community has, in fact, recognized the swine as an excellent model replicating the human cardiovascular system. There have been several wild-type and transgenic porcine models which were produced for biomedicine and translational research. Among these, the cardiovascular ones are the most represented. The continuous involvement of the porcine animal model in the biomedical research, as the continuous advances achieved using swine in translational medicine, support the need for alternative methods to animal experimentation involving pigs. The main purpose of the present work was to develop and characterize novel porcine alternative methods for cardiovascular translational biology/medicine. The work was mainly based on two different models: the first consisted in an ex vivo culture of porcine aortic cylinders and the second consisted in an in vitro culture of porcine aortic derived progenitor cells. Both the models were properly characterized and results indicated that they could be useful to the study of vascular biology. Nevertheless, both the models aim to reduce the use of experimental animals and to refine animal based-trials. In conclusion, the present research aims to be a small, but significant, contribution to the important and necessary field of study of alternative methods to animal experimentation.