4 resultados para Animal Call Structure
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The physico-chemical characterization, structure-pharmacokinetic and metabolism studies of new semi synthetic analogues of natural bile acids (BAs) drug candidates have been performed. Recent studies discovered a role of BAs as agonists of FXR and TGR5 receptor, thus opening new therapeutic target for the treatment of liver diseases or metabolic disorders. Up to twenty new semisynthetic analogues have been synthesized and studied in order to find promising novel drugs candidates. In order to define the BAs structure-activity relationship, their main physico-chemical properties (solubility, detergency, lipophilicity and affinity with serum albumin) have been measured with validated analytical methodologies. Their metabolism and biodistribution has been studied in “bile fistula rat”, model where each BA is acutely administered through duodenal and femoral infusion and bile collected at different time interval allowing to define the relationship between structure and intestinal absorption and hepatic uptake ,metabolism and systemic spill-over. One of the studied analogues, 6α-ethyl-3α7α-dihydroxy-5β-cholanic acid, analogue of CDCA (INT 747, Obeticholic Acid (OCA)), recently under approval for the treatment of cholestatic liver diseases, requires additional studies to ensure its safety and lack of toxicity when administered to patients with a strong liver impairment. For this purpose, CCl4 inhalation to rat causing hepatic decompensation (cirrhosis) animal model has been developed and used to define the difference of OCA biodistribution in respect to control animals trying to define whether peripheral tissues might be also exposed as a result of toxic plasma levels of OCA, evaluating also the endogenous BAs biodistribution. An accurate and sensitive HPLC-ES-MS/MS method is developed to identify and quantify all BAs in biological matrices (bile, plasma, urine, liver, kidney, intestinal content and tissue) for which a sample pretreatment have been optimized.
Resumo:
The aim of this thesis is to explore the possible influence of the food matrix on food quality attributes. Using nuclear magnetic resonance techniques, the matrix-dependent properties of different foods were studied and some useful indices were defined to classify food products based on the matrix behaviour when responding to processing phenomena. Correlations were found between fish freshness indices, assessed by certain geometric parameters linked to the morphology of the animal, i.e. a macroscopic structure, and the degradation of the product structure. The same foodomics approach was also applied to explore the protective effect of modified atmospheres on the stability of fish fillets, which are typically susceptible to oxidation of the polyunsaturated fatty acids incorporated in the meat matrix. Here, freshness is assessed by evaluating the time-dependent change in the fish metabolome, providing an established freshness index, and its relationship to lipid oxidation. In vitro digestion studies, focusing on food products with different matrixes, alone and in combination with other meal components (e.g. seasoning), were conducted to investigate possible interactions between enzymes and food, modulated by matrix structure, which influence digestibility. The interaction between water and the gelatinous matrix of the food, consisting of a network of protein gels incorporating fat droplets, was also studied by means of nuclear magnetic relaxometry, in order to create a prediction tool for the correct classification of authentic and counterfeit food products protected by a quality label. This is one of the first applications of an NMR method focusing on the supramolecular structure of the matrix, rather than the chemical composition, to assess food authenticity. The effect of innovative processing technologies, such as PEF applied to fruit products, has been assessed by magnetic resonance imaging, exploiting information associated with the rehydration kinetics exerted by a modified food structure.
Resumo:
In Metazoa, the germline represents the cell lineage devoted to transmission of genetic heredity across generations. Its functions intuitively evoke the crucial roles that it plays in the development of a new organism and in the evolution of the species. Germline establishment is tightly tied to animal multicellularity itself, in which the complex differentiation of cell lineages is favoured by the confinement of totipotency in specific cell populations. In the present thesis, I addressed the subject of germline characterization in animals through different approaches, in an attempt to cover different sides and scales. First, I investigated the extent and nature of shared differentially transcribed molecular factors in 10 different species germline-related lineages. I observed that newly evolved genes are less likely to be involved in germline-related mechanisms and that the mostly shared transcriptional signal across the species considered was the upregulation of genes associated to proper DNA replication, instead of the expected transcriptional and post-transcriptional regulation, that apparently have a higher level of lineage-specificity. I then focused on the evolutionary history of Tudor domain containing proteins, a gene family that underwent germline-associated expansions in animals. Using data from 24 holozoan phyla, I could confirm the previously proposed evolution of the Tudor domain secondary structure. Also, I associated lineage-specific family reductions and expansions to peculiar genomic dynamics and to the evolution of germline-associated piRNA pathway of retrotransposon silencing. Lastly, I characterized and investigated the expression of the Tudor protein TDRD7 in the clam Ruditapes philippinarum. Through immunolocalization, I could compare its expression profiles in gametogenic specimens to the previously characterized germline marker vasa. Combining results with literature, I proposed that, in this species, TDRD7 is involved in the assembly of germ granules, i.e. cytoplasmic structures associated to germline differentiation in virtually all animals, but whose assemblers can be taxon specific.
Resumo:
The artisanal food chain is enriched by a wide diversity of local food productions with delightful organoleptic characteristics and valuable nutritional properties. Despite their increasing worldwide popularity and appeal, several food safety challenges are addressed in artisanal facilities context suffering from less standardized processing conditions. In such scenario, recent advances in molecular typing and genomic surveillance (e.g., Whole Genome Sequencing [WGS]) represent an unprecedent solution capable of inferring sources of contamination as well as contributing to food safety along the artisanal food continuum. The overall objective of this PhD thesis was to explore potential microbial hazards among different artisanal food productions of animal origins (dairy and meat-derived) typical of the food culture and heritage landscape belonging to Mediterranean countries. Three different studies were then carried out, specifically focussing on: 1) compare the seasonal variability of microbiological quality and potential occurrence of microbial hazards in two batches of Italian artisanal fermented dairy and meat productions; 2) Investigate genetic relationships as well as virulome and resistome of foodborne pathogens isolated within dairy and meat-derived productions located in Italy, Spain, Portugal and Morocco; 3) investigate the population structure, virulome, resistome and mobilome of Klebsiella spp. isolates collected from study 1, including an extended range of public sequences.