5 resultados para Angle’s class II malocclusion

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

La sindrome di Noonan (SN) è una patologia a trasmissione autosomica dominante caratterizzata da bassa statura, difetti cardiaci congeniti, dismorfia facciale. In letteratura sono stati pubblicati pochi case reports riguardanti le condizioni orali-facciali in pazienti affetti da SN. Obiettivo. Individuare patologie di pertinenza ortopedico-ortodontica caratteristiche della sindrome utilizzando un campione di pazienti con diagnosi di SN. Metodi. Un gruppo di 10 pazienti affetti da SN è stato sottoposto a esame obiettivo extraorale ed intraorale, ortopantomografia, teleradiografia latero-laterale, impronte delle arcate dentarie. Le misurazioni sulle TLL sono state effettuate sulla base dell'analisi MBT; i valori palatali provengono dai modelli di studio dell’arcata superiore. È stata utilizzato il test t-Student per mettere a confronto il gruppo di studio e il gruppo di controllo riguardo le misure cefalometriche e i valori palatali. Risultati. Nel gruppo di studio sono state rilevate anomalie di numero (un dente deciduo soprannumerario e una agenesia di un dente permanente). Il test t-Student rivela differenze statisticamente significative per 7 variabili cefalometriche su 13 e per 2 variabili palatali. Conclusioni. Basandosi su questo studio è possibile concludere che i pazienti con SN mostrano II classe scheletrica di tipo mandibolare, crescita iperdivergente, tendenza al morso aperto scheletrico, palatoversione degli incisivi superiori, palato stretto. Questi risultati possono fornire informazioni utili sia per la diagnosi di SN sia per la pianificazione del corretto trattamento ortodontico.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacterial capsular polysaccharides (PS) which naturally contain zwitterionic charge motifs (ZPS) possess specific immunostimulatory activity, leading to direct activation of antigen-presenting cells (APCs) through Toll-like receptor 2 (TLR2) and of T cells in co-culture systems. When administered intraperitoneally, ZPS and bacteria expressing them are involved in the induction or regulation of T-cell dependent inflammatory processes such as intra-abdominal abscess formation. Moreover it has been published that ZPSs are processed to low molecular weight carbohydrates and presented to T cells through a pathway similar to that used for protein antigens. These findings were in contrast with the paradigm according to which polysaccharides are T-independent antigens unable to be presented in association with MHC class II molecules and unable to induce a protective immune response. For this reason in glycoconjugate vaccines polysaccharides often need to be conjugated to a carrier protein to induce protection. The aim of our work was to generate vaccine candidates with antigen and adjuvant properties in one molecule by the chemical introduction of a positive charge into naturally anionic PS from group B streptococcus (GBS). The resulting zwitterionic PS (ZPS) has the ability to activate human and mouse APCs, and in mixed co-cultures of monocytes and T cells, ZPS induce MHC II-dependent T-cell proliferation and up-regulation of activation markers. TLR2 transfectants show reporter gene transcription upon incubation with ZPS and these stimulatory qualities can be blocked by anti-TLR2 mAbs or by the destruction of the zwitterionic motif. However, in vivo, ZPS used alone as vaccine antigen failed to induce protection against GBS challenge, a result which does not confirm the above mentioned postulate that ZPS are T-cell dependent Ags by virtue of their charge motif. Thus to make ZPS visible to the immune system we have conjugated ZPS with a carrier protein. ZPS-glycoconjugates induce higher T cell and Ab responses to carrier and PS, respectively, compared to control PS-glycoconjugates made with the native polysaccharide form. Moreover, protection of mothers or neonate offspring from lethal GBS challenge is better when mothers are immunized with ZPS-conjugates compared to immunization with PS-conjugates. In TLR2 knockout mice, ZPS-conjugates lose both their increased immunogenicity and protective effect after vaccination. When ZPS are co-administered as adjuvants with unconjugated tetanus toxoid (TT), they have the ability to increase the TT-specific antibody titer. In conclusion, glycoconjugates containing ZPS are potent vaccines. They target Ag to TLR2-expressing APCs and activate these APCs, leading to better T cell priming and ultimately to higher protective Ab titers. Thus, rational chemical design can generate potent novel PS-adjuvants with wide application, including glycoconjugates and co-administration with unrelated protein Ags.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dramatic impact that vascular diseases have on human life quality and expectancy nowadays is the reason why both medical and scientific communities put great effort in discovering new and effective ways to fight vascular pathologies. Among the many different treatments, endovascular surgery is a minimally-invasive technique that makes use of X-ray fluoroscopy to obtain real-time images of the patient during interventions. In this context radiopaque biomaterials, i.e. materials able to absorb X-ray radiation, play a fundamental role as they are employed both to enhance visibility of devices during interventions and to protect medical staff and patients from X-ray radiations. Organic-inorganic hybrids are materials that combine characteristics of organic polymers with those of inorganic metal oxides. These materials can be synthesized via the sol-gel process and can be easily applied as thin coatings on different kinds of substrates. Good radiopacity of organic-inorganic hybrids has been recently reported suggesting that these materials might find applications in medical fields where X-ray absorption and visibility is required. The present PhD thesis aimed at developing and characterizing new radiopaque organic-inorganic hybrid materials that can find application in the vascular surgery field as coatings for the improvement of medical devices traceability as well as for the production of X-ray shielding objects and garments. Novel organic-inorganic hybrids based on different polyesters (poly-lactic acid and poly-ε-caprolactone) and polycarbonate (poly-trimethylene carbonate) as the polymeric phase and on titanium oxide as the inorganic phase were synthesized. Study of the phase interactions in these materials allowed to demonstrate that Class II hybrids (where covalent bonds exists between the two phases) can be obtained starting from any kind of polyester or polycarbonate, without the need of polymer pre-functionalization, thanks to the occurrence of transesterification reactions operated by inorganic molecules on ester and carbonate moieties. Polyester based hybrids were successfully coated via dip coating on different kinds of textiles. Coated textiles showed improved radiopacity with respect to the plain fabric while remaining soft to the touch. The hybrid was able to coat single fibers of the yarn rather than coating the yarn as a whole. Openings between yarns were maintained and therefore fabric breathability was preserved. Such coatings are promising for the production of light-weight garments for X-ray protection of medical staff during interventional fluoroscopy, which will help preventing pathologies that stem from chronic X-ray exposure. A means to increase the protection capacity of hybrid-coated fabrics was also investigated and implemented in this thesis. By synthesizing the hybrid in the presence of a suspension of radiopaque tantalum nanoparticles, PDMS-titania hybrid materials with tunable radiopacity were developed and were successfully applied as coatings. A solution for enhancing medical device radiopacity was also successfully investigated. High metal radiopacity was associated with good mechanical and protective properties of organic-inorganic hybrids in the form of a double-layer coating. Tantalum was employed as the constituent of the first layer deposited on sample substrates by means of a sputtering technique. The second layer was composed of a hybrid whose constituents are well-known biocompatible organic and inorganic components, such as the two polymers PCL and PDMS, and titanium oxide, respectively. The metallic layer conferred to the substrate good X-ray visibility. A correlation between radiopacity and coating thickness derived during this study allows to tailor radiopacity simply by controlling the metal layer sputtering deposition time. The applied metal deposition technique also permits easy shaping of the radiopaque layer, allowing production of radiopaque markers for medical devices that can be unambiguously identified by surgeons during implantation and in subsequent radiological investigations. Synthesized PCL-titania and PDMS-titania hybrids strongly adhered to substrates and show good biocompatibility as highlighted by cytotoxicity tests. The PDMS-titania hybrid coating was also characterized by high flexibility that allows it to stand large substrate deformations without detaching nor cracking, thus being suitable for application on flexible medical devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The association between celiac disease (CD) and dental enamel defects (DED) is well known. AIM: This study was designed to investigate the prevalence of DED in CD children and to specifically find a possible correlation between DED and gluten exposure period, CD clinical forms, HLA class II haplotype. MATERIALS AND METHODS: This study was designed as a matched case-control study: 374 children were enrolled (187 celiac and 187 non celiac). Data about age at CD diagnosis, CD clinical form and HLA haplotype were recorded. RESULTS: DED were detected in 87 celiac subject while no dental lesions were found in the remaining 100 patients; in 187 healthy controls enamel lesion were significantly less frequent (5.3 % versus 46.5% ; p<0.005).We found a correlation between DED and gluten exposure period, since among CD patients the mean age at CD diagnosis was significantly (p= 0.0004) higher in the group with DED (3.41± 1.27) than without DED (1.26± 0.7). DED resulted more frequent in atypical and silent forms than in the typical one. The presence of HLA DR 52-53 and DQ7 antigens significantly increased the risk of DED (p=0.0017). CONCLUSIONS: Our results confirmed a possible correlation between CD clinical form, age at CD diagnosis, HLA antigens and DED. The origin of DED in CD children is due to multifactorial events and further studies are needed to investigate other determinants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work, we apply both traditional and Next Generation Sequencing (NGS) tools to investigate some of the most important adaptive traits of wolves (Canis lupus). In the first part, we analyze the variability of three Major Histocompatibility Complex (MHC) class II genes in the Italian wolf population, also studying their possible role in mating choice and their influence on fitness traits. In the second section, as part of a larger canid genome project, we will exploit NGS data to investigate the transcript-level differences between the wolf and the dog genome that can be correlated to domestication.