11 resultados para Angiogenic biomarker

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stem cells are one of the most fascinating areas of biology today, and since the discover of an adult population, i.e., adult Stem Cells (aSCs), they have generated much interest especially for their application potential as a source for cell based regenerative medicine and tissue engineering. aSCs have been found in different tissues including bone marrow, skin, intestine, central nervous system, where they reside in a special microenviroment termed “niche” which regulate the homeostasis and repair of adult tissues. The arterial wall of the blood vessels is much more plastic than ever before believed. Several animal studies have demonstrated the presence of cells with stem cell characteristics within the adult vessels. Recently, it has been also hypothesized the presence of a “vasculogenic zone” in human adult arteries in which a complete hierarchy of resident stem cells and progenitors could be niched during lifetime. Accordingly, it can be speculated that in that location resident mesenchymal stem cells (MSCs) with the ability to differentiate in smooth muscle cells, surrounding pericytes and fibroblasts are present. The present research was aimed at identifying in situ and isolating MSCs from thoracic aortas of young and healthy heart-beating multiorgan donors. Immunohistochemistry performed on fresh and frozen human thoracic aortas demonstrated the presence of the vasculogenic zone between the media and the adventitial layers in which a well preserved plexus of CD34 positive cells was found. These cells expressed intensely HLA-I antigens both before and after cryopreservation and after 4 days of organ cultures remained viable. Following these preliminary results, we succeeded to isolate mesenchymal cells from multi-organ thoracic aortas using a mechanical and enzymatic combined procedure. Cells had phenotypic characteristics of MSC i.e., CD44+, CD90+, CD105+, CD166+, CD34low, CD45- and revealed a transcript expression of stem cell markers, e.g., OCT4, c-kit, BCRP-1, IL6 and BMI-1. As previously documented using bone marrow derived MSCs, resident vascular wall MSCs were able to differentiate in vitro into endothelial cells in the presence of low-serum supplemented with VEGF-A (50 ng/ml) for 7 days. Under the condition described above, cultured cells showed an increased expression of KDR and eNOS, down-regulation of the CD133 transcript, vWF expression as documented by flow cytometry, immunofluorescence, qPCR and TEM. Moreover, matrigel assay revealed that VEGF induced cells were able to form capillary-like structures within 6 hours of seeding. In summary, these findings indicate that thoracic aortas from heart-beating, multi-organ donors are highly suitable for obtaining MSCs with the ability to differentiate in vitro into endothelial cells. Even though their differentiating potential remains to be fully established, it is believed that their angiogenic ability could be a useful property for allogenic use. These cells can be expanded rapidly, providing numbers which are adequate for therapeutic neovascularization; furthermore they can be cryostored in appropriate cell banking facilities for later use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of protein expression profiles for biomarker discovery in serum and in mammalian cell populations needs the continuous improvement and combination of proteins/peptides separation techniques, mass spectrometry, statistical and bioinformatic approaches. In this thesis work two different mass spectrometry-based protein profiling strategies have been developed and applied to liver and inflammatory bowel diseases (IBDs) for the discovery of new biomarkers. The first of them, based on bulk solid-phase extraction combined with matrix-assisted laser desorption/ionization - Time of Flight mass spectrometry (MALDI-TOF MS) and chemometric analysis of serum samples, was applied to the study of serum protein expression profiles both in IBDs (Crohn’s disease and ulcerative colitis) and in liver diseases (cirrhosis, hepatocellular carcinoma, viral hepatitis). The approach allowed the enrichment of serum proteins/peptides due to the high interaction surface between analytes and solid phase and the high recovery due to the elution step performed directly on the MALDI-target plate. Furthermore the use of chemometric algorithm for the selection of the variables with higher discriminant power permitted to evaluate patterns of 20-30 proteins involved in the differentiation and classification of serum samples from healthy donors and diseased patients. These proteins profiles permit to discriminate among the pathologies with an optimum classification and prediction abilities. In particular in the study of inflammatory bowel diseases, after the analysis using C18 of 129 serum samples from healthy donors and Crohn’s disease, ulcerative colitis and inflammatory controls patients, a 90.7% of classification ability and a 72.9% prediction ability were obtained. In the study of liver diseases (hepatocellular carcinoma, viral hepatitis and cirrhosis) a 80.6% of prediction ability was achieved using IDA-Cu(II) as extraction procedure. The identification of the selected proteins by MALDITOF/ TOF MS analysis or by their selective enrichment followed by enzymatic digestion and MS/MS analysis may give useful information in order to identify new biomarkers involved in the diseases. The second mass spectrometry-based protein profiling strategy developed was based on a label-free liquid chromatography electrospray ionization quadrupole - time of flight differential analysis approach (LC ESI-QTOF MS), combined with targeted MS/MS analysis of only identified differences. The strategy was used for biomarker discovery in IBDs, and in particular of Crohn’s disease. The enriched serum peptidome and the subcellular fractions of intestinal epithelial cells (IECs) from healthy donors and Crohn’s disease patients were analysed. The combining of the low molecular weight serum proteins enrichment step and the LCMS approach allowed to evaluate a pattern of peptides derived from specific exoprotease activity in the coagulation and complement activation pathways. Among these peptides, particularly interesting was the discovery of clusters of peptides from fibrinopeptide A, Apolipoprotein E and A4, and complement C3 and C4. Further studies need to be performed to evaluate the specificity of these clusters and validate the results, in order to develop a rapid serum diagnostic test. The analysis by label-free LC ESI-QTOF MS differential analysis of the subcellular fractions of IECs from Crohn’s disease patients and healthy donors permitted to find many proteins that could be involved in the inflammation process. Among them heat shock protein 70, tryptase alpha-1 precursor and proteins whose upregulation can be explained by the increased activity of IECs in Crohn’s disease were identified. Follow-up studies for the validation of the results and the in-depth investigation of the inflammation pathways involved in the disease will be performed. Both the developed mass spectrometry-based protein profiling strategies have been proved to be useful tools for the discovery of disease biomarkers that need to be validated in further studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thesis is set in three different parts, according to the relative experimental models. First, the domestic pig (Sus scrofa) is part of the study on reproductive biotechnologies: the transgenesis technique of Sperm Mediated Gene Transfer is widely studied starting from the quality of the semen, through the study of multiple uptakes of exogenous DNA and lastly used in the production of multi-transgenic blastocysts. Finally we managed to couple the transgenesis pipeline with sperm sorting and therefore produced transgenic embryos of predetermined sex. In the second part of the thesis the attention is on the fruit fly (Drosophila melanogaster) and on its derived cell line: the S2 cells. The in vitro and in vivo models are used to develop and validate an efficient way to knock down the myc gene. First an efficient in vitro protocol is described, than we demonstrate how the decrease in myc transcript remarkably affects the ribosome biogenesis through the study of Polysome gradients, rRNA content and qPCR. In vivo we identified two optimal drivers for the conditional silencing of myc, once the flies are fed with RU486: the first one is throughout the whole body (Tubulin), while the second is a head fat body driver (S32). With these results we present a very efficient model to study the role of myc in multiple aspects of translation. In the third and last part, the focus is on human derived lung fibroblasts (hLF-1), mouse tail fibroblasts and mouse tissues. We developed an efficient assay to quantify the total protein content of the nucleus on a single cell level via fluorescence. We coupled the protocol with classical immunofluorescence so to have at the same time general and particular information, demonstrating that during senescence nuclear proteins increase by 1.8 fold either in human cells, mouse cells and mouse tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obiettivo del lavoro è stato lo sviluppo e la validazione di nuovi bioassay e biomarker quali strumenti da utilizzare in un approccio ecotossicologico integrato per il biomonitoraggio di ambienti marino-costieri interessati da impatto antropico negli organismi che vivono in tali ambienti. L’ambiente reale impiegato per l’applicazione in campo è la Rada di Augusta (Siracusa, Italia). Una batteria di bioassay in vivo e in vitro è stata indagata quale strumento di screening per la misura della tossicità dei sedimenti. La batteria selezionata ha dimostrato di possedere i requisiti necessari ad un applicazione di routine nel monitoraggio di ambienti marino costieri. L’approccio multimarker basato sull’impiego dell’organismo bioindicatore Mytilus galloprovincialis in esperimenti di traslocazione ha consentito di valutare il potenziale applicativo di nuovi biomarker citologici e molecolari di stress chimico parallelamente a biomarker standardizzati di danno genotossico ed esposizione a metalli pesanti. I mitili sono stati traslocati per 45 giorni nei siti di Brucoli (SR) e Rada di Augusta, rispettivamente sito di controllo e sito impattato. I risultati ottenuti supportano l’applicabilità delle alterazioni morfometriche dei granulociti quale biomarker di effetto, direttamente correlato allo stato di salute degli organismi che vivono in un dato ambiente. Il significativo incremento dell’area dei lisosomi osservato contestualmente potrebbe riflettere un incremento dei processi degradativi e dei processi autofagici. I dati sulla sensibilità in campo suggeriscono una valida applicazione della misura dell’attività di anidrasi carbonica in ghiandola digestiva come biomarker di stress in ambiente marino costiero. L’utilizzo delle due metodologie d’indagine (bioassay e biomarker) in un approccio ecotossicologico integrato al biomonitoraggio di ambienti marino-costieri offre uno strumento sensibile e specifico per la valutazione dell’esposizione ad inquinanti e del danno potenziale esercitato dagli inquinanti sugli organismi che vivono in un dato ambiente, permettendo interventi a breve termine e la messa a punto di adeguati programmi di gestione sostenibile dell’ambiente.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Cancer Genome Atlas (TCGA) collaborative project identified four distinct prognostic groups of endometrial carcinoma (EC) based on molecular alterations: (i) the ultramutated subtype that encompassed POLE mutated (POLE) cases; (ii) the hypermutated subtype, characterized by MisMatch Repair deficiency (MMRd); (iii) the copy-number high subtype, with p53 abnormal/mutated features (p53abn); (iv) the copy-number low subtype, known as No Specific Molecular Profile (NSMP). Although the prognostic value of TCGA molecular classification, NSMP tumors present a wide variability in molecular alterations and biological aggressiveness. This study aims to investigate the impact of ARID1A and CTNNB1/β-catenin alterations by targeted Next-generation sequencing (NGS) and immunohistochemistry (IHC) in a consecutive series of 125 molecularly classified ECs. NGS and IHC were used to assign surrogate TCGA groups and to identify molecular alterations of multiple target genes including POLE, PTEN, ARID1A, CTNNB1, TP53. Associations with clinicopathologic parameters, molecular subtypes, and outcomes identified NSMP category as the most heterogeneous group in terms of clinicopathologic features and outcome. Integration of surrogate TCGA molecular classification with ARID1A and β-catenin analysis showed NSMP cases with ARID1A mutation characterized by the worst outcome with early recurrence, while NSMP tumors with ARID1A wild-type and β-catenin alteration had indolent clinicopathologic features and no recurrence. This study indicates how the identification of ARID1A and β-catenin alterations in EC represents a simple and effective way to characterize NSMP tumor aggressiveness and metastatic potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Objectives: Carotid revascularization to prevent future vascular events is reasonable in patients with high-grade carotid stenosis. Currently, several biomarkers to predict carotid plaque development and progression have been investigated, among which microRNAs (miRs) are promising tools for the diagnosis of atherosclerosis. Methods and Results: A total of 49 participants were included in the study, divided into two main populations: Population 1 comprising symptomatic and asymptomatic inpatients, and Population 2 comprising asymptomatic outpatients. The study consisted of two main phases: a preliminary discovery phase and a validation phase, applying different techniques. MiR-profiles were performed on plasma and plaque tissue samples obtained from 4 symptomatic and 4 asymptomatic inpatients. MiRs emerging from profiling comparisons, i.e. miR-126-5p, miR-134-5p, miR-145-5p, miR-151a-5p, miR-34b, miR-451a, miR-720 and miR-1271-5p, were subjected to validation through RT-qPCR analysis in the total cohort of donors. Comparing asymptomatic and symptomatic inpatients, significant differences were reported in the expression levels of c-miRs for miR-126-5p and miR-1271-5p in blood, being more expressed in symptomatic subjects. In contrast, simultaneous evaluation of the selected miRs in plaque tissue samples did not confirm data obtained by the miR profiling, and no significant differences were observed. Using Receiver-Operating Characteristic (ROC) analysis, a circulating molecular signature (mir-126-5p, miR-1271-5p, albumin, C-reactive protein, and monocytes) was identified, allowing the distinction of the two groups in Population 1 (AUC = 0.795). Conclusions: Data emerging from this thesis suggest that c-miRs (i.e. miR-126-5p, miR-1271-5p) combined with selected haemato-biochemical parameters (albumin, C-reactive protein, and monocytes) produced a good molecular 'signature' to distinguish asymptomatic and symptomatic inpatients. C-miRs in blood do not necessarily reflect the expression levels of the same miRs in carotid plaque tissues since different mechanism can influence their expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction Only a proportion of patients with advanced NSCLC benefit from Immune checkpoint blockers (ICBs). No biomarker is validated to choose between ICBs monotherapy or in combination with chemotherapy (Chemo-ICB) when PD-L1 expression is above 50%. The aim of the present study is to validate the biomarker validity of total Metabolic Tumor Volume (tMTV) as assessed by 2-deoxy-2-[18F]fluoro-d-glucose positron emission tomography ([18F]FDG-PET) Material and methods This is a multicentric retrospective study. Patients with advanced NSCLC treated with ICBs, chemotherapy plus ICBs and chemotherapy were enrolled in 12 institutions from 4 countries. Inclusion criteria was a positive PET scan performed within 42 days from treatment start. TMTV was analyzed at each center based on a 42% SUVmax threshold. High tMTV was defined ad tMTV>median Results 493 patients were included, 163 treated with ICBs alone, 236 with chemo-ICBs and 94 with CT. No correlation was found between PD-L1 expression and tMTV. Median PFS for patients with high tMTV (100.1 cm3) was 3.26 months (95% CI 1.94–6.38) vs 14.70 (95% CI 11.51–22.59) for those with low tMTV (p=0.0005). Similarly median OS for pts with high tMTV was 11.4 months (95% CI 8.42 – 19.1) vs 33.1 months for those with low tMTV (95% CI 22.59 – NA), p .00067. In chemo-ICBs treated patients no correlation was found for OS (p = 0.11) and a borderline correlation was found for PFS (p=0.059). Patients with high tMTV and PD-L1 ≥ 50% had a better PFS when treated with combination of chemotherapy and ICBs respect to ICBs alone, with 3.26 months (95% CI 1.94 – 5.79) for ICBs vs 11.94 (95% CI 5.75 – NA) for Chemo ICBs (p = 0.043). Conclusion tMTV is predictive of ICBs benefit, not to CT benefit. tMTV can help to select the best upfront strategy in patients with high tMTV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antimicrobial stewardship programs are gaining more and more relevance in optimizing anti-infective treatment and in preventing the emergence of antimicrobial resistance. Personalization of antimicrobial treatment based on real-time therapeutic drug morning (TDM) and dosing adaptation may represent an important tool in antimicrobial stewardship programs. In this Ph.D project, we aim to focus on differences in pharmacokinetics (PK) for meropenem and piperacillin/tazobactam and host response biomarkers (e.g., C-reactive protein) in severe Gram‐negative related infections occurring in oncohematologic patients. We are interested in identifying optimized model‐based individualized dosing strategies for these antibiotics focusing on biomarkers-guided prediction of PK and pharmacodynamic (PD) parameters using population PK/PD modelling. We expect to identify optimal model‐based dosing targets for these antibiotics for special populations for implementation in TDM routines, and mathematical models characterizing the relationship between biomarkers and outcomes in these populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantitative Susceptibility Mapping (QSM) is an advanced magnetic resonance technique that can quantify in vivo biomarkers of pathology, such as alteration in iron and myelin concentration. It allows for the comparison of magnetic susceptibility properties within and between different subject groups. In this thesis, QSM acquisition and processing pipeline are discussed, together with clinical and methodological applications of QSM to neurodegeneration. In designing the studies, significant emphasis was placed on results reproducibility and interpretability. The first project focuses on the investigation of cortical regions in amyotrophic lateral sclerosis. By examining various histogram susceptibility properties, a pattern of increased iron content was revealed in patients with amyotrophic lateral sclerosis compared to controls and other neurodegenerative disorders. Moreover, there was a correlation between susceptibility and upper motor neuron impairment, particularly in patients experiencing rapid disease progression. Similarly, in the second application, QSM was used to examine cortical and sub-cortical areas in individuals with myotonic dystrophy type 1. The thalamus and brainstem were identified as structures of interest, with relevant correlations with clinical and laboratory data such as neurological evaluation and sleep records. In the third project, a robust pipeline for assessing radiomic susceptibility-based features reliability was implemented within a cohort of patients with multiple sclerosis and healthy controls. Lastly, a deep learning super-resolution model was applied to QSM images of healthy controls. The employed model demonstrated excellent generalization abilities and outperformed traditional up-sampling methods, without requiring a customized re-training. Across the three disorders investigated, it was evident that QSM is capable of distinguishing between patient groups and healthy controls while establishing correlations between imaging measurements and clinical data. These studies lay the foundation for future research, with the ultimate goal of achieving earlier and less invasive diagnoses of neurodegenerative disorders within the context of personalized medicine.