2 resultados para Analyst Coverage, Initiations, Timing, Management Forecasts, IPOs
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The ever increasing demand for new services from users who want high-quality broadband services while on the move, is straining the efficiency of current spectrum allocation paradigms, leading to an overall feeling of spectrum scarcity. In order to circumvent this problem, two possible solutions are being investigated: (i) implementing new technologies capable of accessing the temporarily/locally unused bands, without interfering with the licensed services, like Cognitive Radios; (ii) release some spectrum bands thanks to new services providing higher spectral efficiency, e.g., DVB-T, and allocate them to new wireless systems. These two approaches are promising, but also pose novel coexistence and interference management challenges to deal with. In particular, the deployment of devices such as Cognitive Radio, characterized by the inherent unplanned, irregular and random locations of the network nodes, require advanced mathematical techniques in order to explicitly model their spatial distribution. In such context, the system performance and optimization are strongly dependent on this spatial configuration. On the other hand, allocating some released spectrum bands to other wireless services poses severe coexistence issues with all the pre-existing services on the same or adjacent spectrum bands. In this thesis, these methodologies for better spectrum usage are investigated. In particular, using Stochastic Geometry theory, a novel mathematical framework is introduced for cognitive networks, providing a closed-form expression for coverage probability and a single-integral form for average downlink rate and Average Symbol Error Probability. Then, focusing on more regulatory aspects, interference challenges between DVB-T and LTE systems are analysed proposing a versatile methodology for their proper coexistence. Moreover, the studies performed inside the CEPT SE43 working group on the amount of spectrum potentially available to Cognitive Radios and an analysis of the Hidden Node problem are provided. Finally, a study on the extension of cognitive technologies to Hybrid Satellite Terrestrial Systems is proposed.
Resumo:
Turfgrasses are ubiquitous in urban landscape and their role on carbon (C) cycle is increasing important also due to the considerable footprint related to their management practices. It is crucial to understand the mechanisms driving the C assimilation potential of these terrestrial ecosystems Several approaches have been proposed to assess C dynamics: micro-meteorological methods, small-chamber enclosure system (SC), chrono-sequence approach and various models. Natural and human-induced variables influence turfgrasses C fluxes. Species composition, environmental conditions, site characteristics, former land use and agronomic management are the most important factors considered in literature driving C sequestration potential. At the same time different approaches seem to influence C budget estimates. In order to study the effect of different management intensities on turfgrass, we estimated net ecosystem exchange (NEE) through a SC approach in a hole of a golf course in the province of Verona (Italy) for one year. The SC approach presented several advantages but also limits related to the measurement frequency, timing and duration overtime, and to the methodological errors connected to the measuring system. Daily CO2 fluxes changed according to the intensity of maintenance, likely due to different inputs and disturbances affecting biogeochemical cycles, combined also to the different leaf area index (LAI). The annual cumulative NEE decreased with the increase of the intensity of management. NEE was related to the seasonality of turfgrass, following temperatures and physiological activity. Generally on the growing season CO2 fluxes towards atmosphere exceeded C sequestered. The cumulative NEE showed a system near to a steady state for C dynamics. In the final part greenhouse gases (GHGs) emissions due to fossil fuel consumption for turfgrass upkeep were estimated, pinpointing that turfgrass may result a considerable C source. The C potential of trees and shrubs needs to be considered to obtain a complete budget.