16 resultados para An eddy-resolving ocean model simulation
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Over the past 30 years, unhealthy diets and lifestyles have increased the incidence of noncommunicable diseases and are culprits of diffusion on world’s population of syndromes as obesity or other metabolic disorders, reaching pandemic proportions. In order to comply with such scenario, the food industry has tackled these challenges with different approaches, as the reformulation of foods, fortification of foods, substitution of ingredients and supplements with healthier ingredients, reduced animal protein, reduced fats and improved fibres applications. Although the technological quality of these emerging food products is known, the impact they have on the gut microbiota of consumers remains unclear. In the present PhD thesis, the recipient work was conducted to study different foods with the substitution of the industrial and market components to that of novel green oriented and sustainable ingredients. So far, this thesis included eight representative case studies of the most common substitutions/additions/fortifications in dairy, meat, and vegetable products. The products studied were: (i) a set of breads fortified with polyphenol-rich olive fiber, to replace synthetic antioxidant and preservatives, (ii) a set of Gluten-free breads fortified with algae powder, to fortify the protein content of standard GF products, (iii) different formulations of salami where nitrates were replaced by ascorbic acid and vegetal extract antioxidants and nitrate-reducers starter cultures, (iv) chocolate fiber plus D-Limonene food supplement, as a novel prebiotic formula, (v) hemp seed bran and its alkalase hydrolysate, to introduce as a supplement, (vi) milk with and without lactose, to evaluate the different impact on human colonic microbiota of healthy or lactose-intolerants, (vii) lactose-free whey fermented and/or with probiotics added, to be introduced as an alternative beverage, exploring its impact on human colonic microbiota from healthy or lactose-intolerants, and (viii) antibiotics, to assess whether maternal amoxicillin affects the colon microbiota of piglets.
Resumo:
The coastal area along the Emilia-Romagna (ER), in the Italian side of the northern Adriatic Sea, is considered to implement an unstructured numerical ocean model with the aim to develop innovative tools for the coastal management and a forecasting system for the storm surge risk reduction. The Adriatic Sea has been the focus of several studies because of its peculiar dynamics driven by many forcings acting at basin and local scales. The ER coast is particularly exposed to storm surge events. In particular conditions, winds, tides and seicehs may combine and contribute to the flooding of the coastal area. The global sea level rise expected in the next decades will increase even more the hazard along the ER and Adriatic coast. Reliable Adriatic and Mediterranean scale numerical ocean models are now available to allow the dynamical downscaling of very high-resolution models in limited coastal areas. In this work the numerical ocean model SHYFEM is implemented in the Goro lagoon (named GOLFEM) and along the ER coast (ShyfER) to test innovative solutions against sea related coastal hazards. GOLFEM was succesfully applied to analyze the Goro lagoon dynamics and to assess the dynamical effects of human interventions through the analysis of what-if scenarios. The assessment of storm surge hazard in the Goro lagoon was carried out through the development of an ensemble storm surge forecasting system with GOLFEM using forcing from different operational meteorological and ocean models showing the fundamental importance of the boundary conditions. The ShyfER domain is used to investigate innovative solutions against storm surge related hazard along the ER coast. The seagrass is assessed as a nature-based solution (NBS) for coastal protection under present and future climate conditions. The results show negligible effects on sea level but sensible effects in reducing bottom current velocity.
Resumo:
The study of tides and their interactions with the complex dynamics of the global ocean represents a crucial challenge in ocean modelling. This thesis aims to deepen this study from a dynamical point of view, analysing what are the tidal effects on the general circulation of the ocean. We perform different experiments of a mesoscale-permitting global ocean model forced by both atmospheric fields and astronomical tidal potential, and we implement two parametrizations to include in the model tidal phenomena that are currently unresolved, with particular emphasis to the topographic wave drag for locally dissipating internal waves. An additional experiment using a mesoscale-resolving configuration is used to compare the simulated tides at different resolutions with observed data. We find that the accuracy of modelled tides strongly depends on the region and harmonic component of interest, even though the increased resolution allows to improve the modelled topography and resolve more intense internal waves. We then focus on the impact of tides in the Atlantic Ocean and find that tides weaken the overturning circulation during the analysed period from 1981 to 2007, even though the interannual differences strongly change in both amplitude and phase. The zonally integrated momentum balance shows that tide changes the water stratification at the zonal boundaries, modifying the pressure and therefore the geostrophic balance over the entire basin. Finally, we describe the overturning circulation in the Mediterranean Sea computing the meridional and zonal streamfunctions both in the Eulerian and residual frameworks. The circulation is characterised by different cells, and their forcing processes are described with particular emphasis to the role of mesoscale and a transient climatic event. We complete the description of the overturning circulation giving evidence for the first time to the connection between meridional and zonal cells.
Resumo:
This coupled model combines two state-of-the-art numerical models, NEMO for the oceanic component and WRF for the atmospheric component and implements them at an appropriate resolution. The oceanic model has been implemented starting from the Mediterranean Forecasting System with a resolution of 1/24° and the domain was extended to exactly match the grid of a newly implemented atmospheric model for the same area. The uncoupled ocean model has been validated against SST observed data, both in the simulation of an extreme event and in the short-term forecast of two seasonal periods. A new setup of the model was successfully tested in which the downward radiative fluxes were prescribed from atmospheric forecasts. Various physical schemes, domain, boundary, and initial conditions were tested with the atmospheric model to obtain the best representation of medicane Ianos. The heat fluxes calculated by the uncoupled models were compared to determine which setup gave the best energy balance between the components of the coupled model. The coupling strategy used is the traditional one, where the ocean is driven by the surface stress, heat fluxes, and radiative fluxes computed in the atmospheric component, which in turn receives the SST and surface currents. As expected, the overall skills of the coupled model are slightly degraded compared to the uncoupled models, even though the positioning and timing of the cyclone at the time of the landfall is enhanced. The mean heat fluxes do not change compared to the uncoupled model, whereas the pattern of the shortwave radiation and latent heat is changed. Moreover, the two energy fluxes are larger in absolute values than those calculated with the MFS formulas. The fact that they have opposite signs give raise to a compensation error that limits the overall degradation of the coupled simulation.
Resumo:
The Ph.D. thesis describes the simulations of different microwave links from the transmitter to the receiver intermediate-frequency ports, by means of a rigorous circuit-level nonlinear analysis approach coupled with the electromagnetic characterization of the transmitter and receiver front ends. This includes a full electromagnetic computation of the radiated far field which is used to establish the connection between transmitter and receiver. Digitally modulated radio-frequency drive is treated by a modulation-oriented harmonic-balance method based on Krylov-subspace model-order reduction to allow the handling of large-size front ends. Different examples of links have been presented: an End-to-End link simulated by making use of an artificial neural network model; the latter allows a fast computation of the link itself when driven by long sequences of the order of millions of samples. In this way a meaningful evaluation of such link performance aspects as the bit error rate becomes possible at the circuit level. Subsequently, a work focused on the co-simulation an entire link including a realistic simulation of the radio channel has been presented. The channel has been characterized by means of a deterministic approach, such as Ray Tracing technique. Then, a 2x2 multiple-input multiple-output antenna link has been simulated; in this work near-field and far-field coupling between radiating elements, as well as the environment factors, has been rigorously taken into account. Finally, within the scope to simulate an entire ultra-wideband link, the transmitting side of an ultrawideband link has been designed, and an interesting Front-End co-design technique application has been setup.
Resumo:
The Assimilation in the Unstable Subspace (AUS) was introduced by Trevisan and Uboldi in 2004, and developed by Trevisan, Uboldi and Carrassi, to minimize the analysis and forecast errors by exploiting the flow-dependent instabilities of the forecast-analysis cycle system, which may be thought of as a system forced by observations. In the AUS scheme the assimilation is obtained by confining the analysis increment in the unstable subspace of the forecast-analysis cycle system so that it will have the same structure of the dominant instabilities of the system. The unstable subspace is estimated by Breeding on the Data Assimilation System (BDAS). AUS- BDAS has already been tested in realistic models and observational configurations, including a Quasi-Geostrophicmodel and a high dimensional, primitive equation ocean model; the experiments include both fixed and“adaptive”observations. In these contexts, the AUS-BDAS approach greatly reduces the analysis error, with reasonable computational costs for data assimilation with respect, for example, to a prohibitive full Extended Kalman Filter. This is a follow-up study in which we revisit the AUS-BDAS approach in the more basic, highly nonlinear Lorenz 1963 convective model. We run observation system simulation experiments in a perfect model setting, and with two types of model error as well: random and systematic. In the different configurations examined, and in a perfect model setting, AUS once again shows better efficiency than other advanced data assimilation schemes. In the present study, we develop an iterative scheme that leads to a significant improvement of the overall assimilation performance with respect also to standard AUS. In particular, it boosts the efficiency of regime’s changes tracking, with a low computational cost. Other data assimilation schemes need estimates of ad hoc parameters, which have to be tuned for the specific model at hand. In Numerical Weather Prediction models, tuning of parameters — and in particular an estimate of the model error covariance matrix — may turn out to be quite difficult. Our proposed approach, instead, may be easier to implement in operational models.
Resumo:
This research activity studied how the uncertainties are concerned and interrelated through the multi-model approach, since it seems to be the bigger challenge of ocean and weather forecasting. Moreover, we tried to reduce model error throughout the superensemble approach. In order to provide this aim, we created different dataset and by means of proper algorithms we obtained the superensamble estimate. We studied the sensitivity of this algorithm in function of its characteristics parameters. Clearly, it is not possible to evaluate a reasonable estimation of the error neglecting the importance of the grid size of ocean model, for the large amount of all the sub grid-phenomena embedded in space discretizations that can be only roughly parametrized instead of an explicit evaluation. For this reason we also developed a high resolution model, in order to calculate for the first time the impact of grid resolution on model error.
Resumo:
Computer aided design of Monolithic Microwave Integrated Circuits (MMICs) depends critically on active device models that are accurate, computationally efficient, and easily extracted from measurements or device simulators. Empirical models of active electron devices, which are based on actual device measurements, do not provide a detailed description of the electron device physics. However they are numerically efficient and quite accurate. These characteristics make them very suitable for MMIC design in the framework of commercially available CAD tools. In the empirical model formulation it is very important to separate linear memory effects (parasitic effects) from the nonlinear effects (intrinsic effects). Thus an empirical active device model is generally described by an extrinsic linear part which accounts for the parasitic passive structures connecting the nonlinear intrinsic electron device to the external world. An important task circuit designers deal with is evaluating the ultimate potential of a device for specific applications. In fact once the technology has been selected, the designer would choose the best device for the particular application and the best device for the different blocks composing the overall MMIC. Thus in order to accurately reproducing the behaviour of different-in-size devices, good scalability properties of the model are necessarily required. Another important aspect of empirical modelling of electron devices is the mathematical (or equivalent circuit) description of the nonlinearities inherently associated with the intrinsic device. Once the model has been defined, the proper measurements for the characterization of the device are performed in order to identify the model. Hence, the correct measurement of the device nonlinear characteristics (in the device characterization phase) and their reconstruction (in the identification or even simulation phase) are two of the more important aspects of empirical modelling. This thesis presents an original contribution to nonlinear electron device empirical modelling treating the issues of model scalability and reconstruction of the device nonlinear characteristics. The scalability of an empirical model strictly depends on the scalability of the linear extrinsic parasitic network, which should possibly maintain the link between technological process parameters and the corresponding device electrical response. Since lumped parasitic networks, together with simple linear scaling rules, cannot provide accurate scalable models, either complicate technology-dependent scaling rules or computationally inefficient distributed models are available in literature. This thesis shows how the above mentioned problems can be avoided through the use of commercially available electromagnetic (EM) simulators. They enable the actual device geometry and material stratification, as well as losses in the dielectrics and electrodes, to be taken into account for any given device structure and size, providing an accurate description of the parasitic effects which occur in the device passive structure. It is shown how the electron device behaviour can be described as an equivalent two-port intrinsic nonlinear block connected to a linear distributed four-port passive parasitic network, which is identified by means of the EM simulation of the device layout, allowing for better frequency extrapolation and scalability properties than conventional empirical models. Concerning the issue of the reconstruction of the nonlinear electron device characteristics, a data approximation algorithm has been developed for the exploitation in the framework of empirical table look-up nonlinear models. Such an approach is based on the strong analogy between timedomain signal reconstruction from a set of samples and the continuous approximation of device nonlinear characteristics on the basis of a finite grid of measurements. According to this criterion, nonlinear empirical device modelling can be carried out by using, in the sampled voltage domain, typical methods of the time-domain sampling theory.
Resumo:
The objective of the Ph.D. thesis is to put the basis of an all-embracing link analysis procedure that may form a general reference scheme for the future state-of-the-art of RF/microwave link design: it is basically meant as a circuit-level simulation of an entire radio link, with – generally multiple – transmitting and receiving antennas examined by EM analysis. In this way the influence of mutual couplings on the frequency-dependent near-field and far-field performance of each element is fully accounted for. The set of transmitters is treated as a unique nonlinear system loaded by the multiport antenna, and is analyzed by nonlinear circuit techniques. In order to establish the connection between transmitters and receivers, the far-fields incident onto the receivers are evaluated by EM analysis and are combined by extending an available Ray Tracing technique to the link study. EM theory is used to describe the receiving array as a linear active multiport network. Link performances in terms of bit error rate (BER) are eventually verified a posteriori by a fast system-level algorithm. In order to validate the proposed approach, four heterogeneous application contexts are provided. A complete MIMO link design in a realistic propagation scenario is meant to constitute the reference case study. The second one regards the design, optimization and testing of various typologies of rectennas for power generation by common RF sources. Finally, the project and implementation of two typologies of radio identification tags, at X-band and V-band respectively. In all the cases the importance of an exhaustive nonlinear/electromagnetic co-simulation and co-design is demonstrated to be essential for any accurate system performance prediction.
Resumo:
The interaction between atmosphere–land–ocean–biosphere systems plays a prominent role on the atmospheric dynamics and on the convective rainfall distribution over the West Africa monsoon area during the boreal summer. In particular, the initialization of convective systems in the Sub – Sahelian region has been directly linked to soil moisture heterogeneities identified as the major triggering, development and propagation of convective systems. The present study aims at investigating African monsoon large scale convective dynamics and rainfall diurnal cycle through an exploration of the hypothesis behind the mechanisms of a monsoon phenomenon as an emergence of a collective dynamics of many propagating convective systems. Such hypothesis is based on the existence of an internal self – regulation mechanism among the various components. To achieve these results a multiple analysis was performed based on remote sensed rainfall dataset, and global and regional modelling data for a period of 5 seasons: 2004 - 2008. Satellite rainfall data and convective occurrence variability were studied for assessing typical spatio – temporal signatures and characteristics with an emphasis to the diurnal cycle footprint. A global model and regional model simulation datasets, specifically developed for this analysis and based on Regional Atmospheric Modelling System – RAMS, have been analysed. Results from numerical model datasets highlight the evidence of a synchronization between the destabilization of the convective boundary layer and rainfall occurrence due to the solar radiation forcing through the latent heat release. This supports the conclusion that the studied interacting systems are associated with a process of mutual adjustment of rhythms. Furthermore, this rainfall internal coherence was studied in relation to the West African Heat Low pressure system, which has a prominent role in the large scale summer variability over the Mediterranean area since it is acting as one of dynamic link between sub tropical and midlatitudes variability.
Resumo:
One important metaphor, referred to biological theories, used to investigate on organizational and business strategy issues is the metaphor about heredity; an area requiring further investigation is the extent to which the characteristics of blueprints inherited from the parent, helps in explaining subsequent development of the spawned ventures. In order to shed a light on the tension between inherited patterns and the new trajectory that may characterize spawned ventures’ development we propose a model aimed at investigating which blueprints elements might exert an effect on business model design choices and to which extent their persistence (or abandonment) determines subsequent business model innovation. Under the assumption that academic and corporate institutions transmit different genes to their spin-offs, we hence expect to have heterogeneity in elements that affect business model design choices and its subsequent evolution. This is the reason why we carry on a twofold analysis in the biotech (meta)industry: under a multiple-case research design, business model and especially its fundamental design elements and themes scholars individuated to decompose the construct, have been thoroughly analysed. Our purpose is to isolate the dimensions of business model that may have been the object of legacy and the ones along which an experimentation and learning process is more likely to happen, bearing in mind that differences between academic and corporate might not be that evident as expected, especially considering that business model innovation may occur.
Resumo:
Theoretical models are developed for the continuous-wave and pulsed laser incision and cut of thin single and multi-layer films. A one-dimensional steady-state model establishes the theoretical foundations of the problem by combining a power-balance integral with heat flow in the direction of laser motion. In this approach, classical modelling methods for laser processing are extended by introducing multi-layer optical absorption and thermal properties. The calculation domain is consequently divided in correspondence with the progressive removal of individual layers. A second, time-domain numerical model for the short-pulse laser ablation of metals accounts for changes in optical and thermal properties during a single laser pulse. With sufficient fluence, the target surface is heated towards its critical temperature and homogeneous boiling or "phase explosion" takes place. Improvements are seen over previous works with the more accurate calculation of optical absorption and shielding of the incident beam by the ablation products. A third, general time-domain numerical laser processing model combines ablation depth and energy absorption data from the short-pulse model with two-dimensional heat flow in an arbitrary multi-layer structure. Layer removal is the result of both progressive short-pulse ablation and classical vaporisation due to long-term heating of the sample. At low velocity, pulsed laser exposure of multi-layer films comprising aluminium-plastic and aluminium-paper are found to be characterised by short-pulse ablation of the metallic layer and vaporisation or degradation of the others due to thermal conduction from the former. At high velocity, all layers of the two films are ultimately removed by vaporisation or degradation as the average beam power is increased to achieve a complete cut. The transition velocity between the two characteristic removal types is shown to be a function of the pulse repetition rate. An experimental investigation validates the simulation results and provides new laser processing data for some typical packaging materials.
Resumo:
The market’s challenges bring firms to collaborate with other organizations in order to create Joint Ventures, Alliances and Consortia that are defined as “Interorganizational Networks” (IONs) (Provan, Fish and Sydow; 2007). Some of these IONs are managed through a shared partecipant governance (Provan and Kenis, 2008): a team composed by entrepreneurs and/or directors of each firm of an ION. The research is focused on these kind of management teams and it is based on an input-process-output model: some input variables (work group’s diversity, intra-team's friendship network density) have a direct influence on the process (team identification, shared leadership, interorganizational trust, team trust and intra-team's communication network density), which influence some team outputs, individual innovation behaviors and team effectiveness (team performance, work group satisfaction and ION affective commitment). Data was collected on a sample of 101 entrepreneurs grouped in 28 ION’s government teams and the research hypotheses are tested trough the path analysis and the multilevel models. As expected trust in team and shared leadership are positively and directly related to team effectiveness while team identification and interorganizational trust are indirectly related to the team outputs. The friendship network density among the team’s members has got positive effects on the trust in team and on the communication network density, and also, through the communication network density it improves the level of the teammates ION affective commitment. The shared leadership and its effects on the team effectiveness are fostered from higher level of team identification and weakened from higher level of work group diversity, specifically gender diversity. Finally, the communication network density and shared leadership at the individual level are related to the frequency of individual innovative behaviors. The dissertation’s results give a wider and more precise indication about the management of interfirm network through “shared” form of governance.
Resumo:
Primary glioblastoma (GB), the most common and aggressive adult brain tumour, is refractory to conventional therapies and characterised by poor prognosis. GB displays striking cellular heterogeneity, with a sub-population, called Glioblastoma Stem Cells (GSCs), intrinsically resistant to therapy, hence the high rate of recurrence. Alterations of the tumour suppressor gene PTEN are prevalent in primary GBM, resulting in the inhibition of the polarity protein Lgl1 due to aPKC hyperactivation. Dysregulation of this molecular axis is one of the mechanisms involved in GSC maintenance. After demonstrating that the PTEN/aPKC/Lgl axis is conserved in Drosophila, I deregulated it in different cells populations of the nervous system in order to individuate the cells at the root of neurogenic brain cancers. This analysis identified the type II neuroblasts (NBs) as the most sensitive to alterations of this molecular axis. Type II NBs are a sub-population of Drosophila stem cells displaying a lineage similar to that of the mammalian neural stem cells. Following aPKC activation in these stem cells, I obtained an adult brain cancer model in Drosophila that summarises many phenotypic traits of human brain tumours. Fly tumours are indeed characterised by accumulation of highly proliferative immature cells and keep growing in the adult leading the affected animals to premature death. With the aim to understand the role of cell polarity disruption in this tumorigenic process I carried out a molecular characterisation and transcriptome analysis of brain cancers from our fly model. In summary, the model I built and partially characterised in this thesis work may help deepen our knowledge on human brain cancers by investigating many different aspects of this complicate disease.
Resumo:
Gliomas are one of the most frequent primary malignant brain tumors. Acquisition of stem-like features likely contributes to the malignant nature of high-grade gliomas and may be responsible for the initiation, growth, and recurrence of these tumors. In this regard, although the traditional 2D cell culture system has been widely used in cancer research, it shows limitations in maintaining the stemness properties of cancer and in mimicking the in vivo microenvironment. In order to overcome these limitations, different three-dimensional (3D) culture systems have been developed to mimic better the tumor microenvironment. Cancer cells cultured in 3D structures may represent a more reliable in vitro model due to increased cell-cell and cell-extracellular matrix (ECM) interaction. Several attempts to recreate brain cancer tissue in vitro are described in literature. However, to date, it is still unclear which main characteristics the ideal model should reproduce. The overall goal of this project was the development of a 3D in vitro model able to reproduce the brain ECM microenvironment and to recapitulate pathological condition for the study of tumor stroma interactions, tumor invasion ability, and molecular phenotype of glioma cells. We performed an in silico bioinformatic analysis using GEPIA2 Software to compare the expression level of seven matrix protein in the LGG tumors with healthy tissues. Then, we carried out a FFPE retrospective study in order to evaluate the percentage of expression of selected proteins. Thus, we developed a 3D scaffold composed by Hyaluronic Acid and Collagen IV in a ratio of 50:50. We used two astrocytoma cell lines, HTB-12 and HTB-13. In conclusion, we developed an in vitro 3D model able to reproduce the composition of brain tumor ECM, demonstrating that it is a feasible platform to investigate the interaction between tumor cells and the matrix.