7 resultados para Amyloid-beta(1-42)
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Nano(bio)science and nano(bio)technology play a growing and tremendous interest both on academic and industrial aspects. They are undergoing rapid developments on many fronts such as genomics, proteomics, system biology, and medical applications. However, the lack of characterization tools for nano(bio)systems is currently considered as a major limiting factor to the final establishment of nano(bio)technologies. Flow Field-Flow Fractionation (FlFFF) is a separation technique that is definitely emerging in the bioanalytical field, and the number of applications on nano(bio)analytes such as high molar-mass proteins and protein complexes, sub-cellular units, viruses, and functionalized nanoparticles is constantly increasing. This can be ascribed to the intrinsic advantages of FlFFF for the separation of nano(bio)analytes. FlFFF is ideally suited to separate particles over a broad size range (1 nm-1 μm) according to their hydrodynamic radius (rh). The fractionation is carried out in an empty channel by a flow stream of a mobile phase of any composition. For these reasons, fractionation is developed without surface interaction of the analyte with packing or gel media, and there is no stationary phase able to induce mechanical or shear stress on nanosized analytes, which are for these reasons kept in their native state. Characterization of nano(bio)analytes is made possible after fractionation by interfacing the FlFFF system with detection techniques for morphological, optical or mass characterization. For instance, FlFFF coupling with multi-angle light scattering (MALS) detection allows for absolute molecular weight and size determination, and mass spectrometry has made FlFFF enter the field of proteomics. Potentialities of FlFFF couplings with multi-detection systems are discussed in the first section of this dissertation. The second and the third sections are dedicated to new methods that have been developed for the analysis and characterization of different samples of interest in the fields of diagnostics, pharmaceutics, and nanomedicine. The second section focuses on biological samples such as protein complexes and protein aggregates. In particular it focuses on FlFFF methods developed to give new insights into: a) chemical composition and morphological features of blood serum lipoprotein classes, b) time-dependent aggregation pattern of the amyloid protein Aβ1-42, and c) aggregation state of antibody therapeutics in their formulation buffers. The third section is dedicated to the analysis and characterization of structured nanoparticles designed for nanomedicine applications. The discussed results indicate that FlFFF with on-line MALS and fluorescence detection (FD) may become the unparallel methodology for the analysis and characterization of new, structured, fluorescent nanomaterials.
Resumo:
Down syndrome (DS) or Trisomy 21, occurring in 1/700 and 1/1000 livebirths, is the most common genetic disorder, characterized by a third copy of the human chromosome 21 (Hsa21). DS is associated with various defects, including congenital heart diseases, craniofacial abnormalities, immune system dysfunction, mental retardation (MR), learning and memory deficiency. The phenotypic features in DS are a direct consequence of overexpression of genes located within the triplicated region on Hsa21. In addition to developmental brain abnormalities and disabilities, people with DS by the age of 30-40 have a greatly increased risk of early-onset of Alzheimer’s disease (AD) and an apparent tendency toward premature aging. Many of the immunological anomalies in DS can be enclosed in the spectrum of multiple signs of early senescence. People with DS have an increased vulnerability to oxidative damage and many factors, including amyloid beta protein (Abeta), genotype ApoE4, oxidative stress, mutations in mitochondrial DNA (mtDNA), impairment of antioxidant enzymes, accelerated neuronal cell apoptosis, are related to neuronal degeneration and early aging in DS. SUBJECTS and METHODS: Since 2007 a population of 50 adolescents and adults with DS, 26 males and 24 females (sex-ratio: M/F = 1.08), has been evaluated for the presence of neurological features, biomarkers and genetic factors correlated with neuronal degeneration and premature aging. The control group was determined by the mother and the siblings of the patients. A neuropsychiatric evaluation was obtained from all patients. The levels of thyroid antibodies (antiTg and antiTPO) and of some biochemical markers of oxidative stress, including homocysteine (tHcy), uric acid, cobalamin, folate were measured. All patients, the mother and the siblings were genotyped for ApoE gene. RESULTS: 40% of patients, with a mild prevalence of females aged between 19 and 30 years, showed increased levels of antiTg and antiTPO. The levels of tHcy were normal in 52% patients and mildly increased in 40%; hyperomocysteinemia was associated with normal levels of thyroid antibodies in 75% of patients (p<0.005). The levels of uric acid were elevated in 26%. Our study showed a prevalence of severe MR in patients aged between 1-18 years and over 30 years. Only 3 patients, 2 females and one male, over 30 years of age, showed dementia. According to the literature, the rate of Down left-handers was high (25%) compared to the rest of population and the laterality was associated with increased levels of thyroid antibodies (70%). 21.5% of patients were ApoE4 positive (ApoE4+) with a mean/severe MR. CONCLUSIONS: Until now no biochemical evidence of oxidative damage and no deficiency or alteration of antioxidant function in our patients with DS were found. mtDNA sequencing could show some mutations age-related and associated with oxidative damage and neurocognitive decline in the early aging of DS. The final aim is found predictive markers of early-onset dementia and a target strategy for the prevention and the treatment of diseases caused by oxidative stress. REFERENCES: 1) Rachidi M, Lopes C: “Mental retardation and associated neurological dysfunctions in Down syndrome: a consequence of dysregulation in critical chromosome 21 genes and associated molecular pathways.” - Eur J Paediatr Neurol. May;12(3):168-82 (2008). 2) Lott IT, Head E: “Down syndrome and Alzheimer's disease: a link between development and aging.” - Ment Retard Dev Disabil Res Rev, 7(3):172-8 (2001). 3) Lee HC, Wei YH: “Oxidative Stress, Mitochondrial DNA Mutation, and Apoptosis in Aging.” - Exp Biol Med (Maywood), May;232(5):592-606 (2007).
Resumo:
Alzheimer's disease (AD) is probably caused by both genetic and environmental risk factors. The major genetic risk factor is the E4 variant of apolipoprotein E gene called apoE4. Several risk factors for developing AD have been identified including lifestyle, such as dietary habits. The mechanisms behind the AD pathogenesis and the onset of cognitive decline in the AD brain are presently unknown. In this study we wanted to characterize the effects of the interaction between environmental risk factors and apoE genotype on neurodegeneration processes, with particular focus on behavioural studies and neurodegenerative processes at molecular level. Towards this aim, we used 6 months-old apoE4 and apoE3 Target Replacement (TR) mice fed on different diets (high intake of cholesterol and high intake of carbohydrates). These mice were evaluated for learning and memory deficits in spatial reference (Morris Water Maze (MWM)) and contextual learning (Passive Avoidance) tasks, which involve the hippocampus and the amygdala, respectively. From these behavioural studies we found that the initial cognitive impairments manifested as a retention deficit in apoE4 mice fed on high carbohydrate diet. Thus, the genetic risk factor apoE4 genotype associated with a high carbohydrate diet seems to affect cognitive functions in young mice, corroborating the theory that the combination of genetic and environmental risk factors greatly increases the risk of developing AD and leads to an earlier onset of cognitive deficits. The cellular and molecular bases of the cognitive decline in AD are largely unknown. In order to determine the molecular changes for the onset of the early cognitive impairment observed in the behavioural studies, we performed molecular studies, with particular focus on synaptic integrity and Tau phosphorylation. The most relevant finding of our molecular studies showed a significant decrease of Brain-derived Neurotrophic Factor (BDNF) in apoE4 mice fed on high carbohydrate diet. Our results may suggest that BDNF decrease found in apoE4 HS mice could be involved in the earliest impairment in long-term reference memory observed in behavioural studies. The second aim of this thesis was to study possible involvement of leptin in AD. There is growing evidence that leptin has neuroprotective properties in the Central Nervous System (CNS). Recent evidence has shown that leptin and its receptors are widespread in the CNS and may provide neuronal survival signals. However, there are still numerous questions, regarding the molecular mechanism by which leptin acts, that remain unanswered. Thus, given to the importance of the involvement of leptin in AD, we wanted to clarify the function of leptin in the pathogenesis of AD and to investigate if apoE genotype affect leptin levels through studies in vitro, in mice and in human. Our findings suggest that apoE4 TR mice showed an increase of leptin in the brain. Leptin levels are also increased in the cerebral spinal fluid of AD patients and apoE4 carriers with AD have higher levels of leptin than apoE3 carriers. Moreover, leptin seems to be expressed by reactive glial cells in AD brains. In vitro, ApoE4 together with Amyloid beta increases leptin production by microglia and astrocytes. Taken together, all these findings suggest that leptin replacement might not be a good strategy for AD therapy. Our results show that high leptin levels were found in AD brains. These findings suggest that, as high leptin levels do not promote satiety in obese individuals, it might be possible that they do not promote neuroprotection in AD patients. Therefore, we hypothesized that AD brain could suffer from leptin resistance. Further studies will be critical to determine whether or not the central leptin resistance in SNC could affect its potential neuroprotective effects.
Resumo:
The aims of this work were to investigate the role of nuclear Phospholipase C beta 1 (PI-PLCβ1) in human and mouse cell lines and to identify new binding partners of nuclear PI-PLCβ1 to further understand the functional network in which the enzyme acts. The intracellular distribution of PI-PLCβ1 was further investigated in human leukaemia cell lines (NB4, HL60, THP1, CEM, Jurkat, K562). With the exception of HL60, a high endogenous level of PI-PLCβ1 was detected in purified nuclei in each of the cell lines. We found that also in Ba/F3 pro-B cells overexpressing PI-PLCβ1b the protein localize within the nucleus. Although our data demonstrated that PI-PLCβ1b was not involved in cell proliferation and IGF-1 response as shown in other cell lines (FELC and Swiss 3T3), there was an effect on apoptosis. Activation of early apoptotic markers caspase-3 and PARP was delayed in PI-PLCβ1b overexpressing Ba/F3 cells treated with 5 gr/ml mitomycin C for 24h. We performed an antibody-specific immunoprecipitation on nuclear lysates from FELC-PLCβ1b cells. Mass spectrometry analysis (nano-ESI-Q-TOF) of co-immunoprecipitated proteins allowed for identification of 92 potential nuclear PI-PLCβ1b interactors. Among these, several already documented PI-PLCβ1b interacting partners (Srp20, LaminB, EF1α2) were identified, further validating our data. All the identified proteins were nuclear, mostly localized within the nuclear speckles. This evidence is particularly relevant as PI-PLCβ1 is known to localize in the same domains. Many of the identified proteins are involved in cell cycle, proliferation and transcriptional control. In particular, many of the proteins are components of the spliceosome multi-complex, strengthening the idea that PI-PLCβ1b is involved in mRNA processing and maturation. Future work will aim to better characterize the regulatory role of PI-PLCβ1b in mRNA splicing.
Resumo:
Oxidative stress has been implicated in the pathogenesis of a number of diseases including neurodegenerative disorders, cancer, ischemia, etc. Alzheimer’s disease (AD) is histopathologically characterized by the presence of extracellular senile plaque (SP), predominantly consisting of fibrillar amyloid-peptide (Aβ), intracellular neurofibrillary tangles (NFTs), composed of hyperphosphorylated tau protein, and cell loss in the selected regions of the brain. However, the pathogenesis of AD remains largely unknown, but a number of hypothesis were proposed for AD mechanisms, which include: the amyloid cascade, excitotoxicity, oxidative stress and inflammation hypothesis, and all of them are based, to some extent on the role of A. Accumulated evidence indicates that the increased levels of ROS may act as important mediators of synaptic loss and eventually promote formation of neurofibrillary tangles and senile plaques. Therefore a vicious circle between ROS and Aaccumulation may accelerate progression of AD. For these reasons, growing attention has focused on oxidative mechanism of Atoxicity as well as the search for novel neuroprotective agents. A strategy to prevent the oxidative stress in neurons may be the use of chemopreventive agents as inducers of antioxidant and phase 2 enzymes. Sulforaphane (SF), derived from corresponding glucoraphanin, glucosinolate found in abundance in cruciferous vegetables, has recently gained attention as a potential neuroprotective compound inducer of antioxidant phase 2 enzymes. Consistent with this evidence, the study is aimed at identifying the SF ability to prevent and counteract the oxidative damage inducted by oligomers of Aβ (1-42) in terms of impairment in the intracellular redox state and cellular death in differentiated human neuroblastoma and microglia primary cultures. In addition we will evaluated the mechanism underlying the SF neuroprotection activity.
Resumo:
The Alzheimer’s disease (AD), the most prevalent form of age-related dementia, is a multifactorial and heterogeneous neurodegenerative disease. The molecular mechanisms underlying the pathogenesis of AD are yet largely unknown. However, the etiopathogenesis of AD likely resides in the interaction between genetic and environmental risk factors. Among the different factors that contribute to the pathogenesis of AD, amyloid-beta peptides and the genetic risk factor apoE4 are prominent on the basis of genetic evidence and experimental data. ApoE4 transgenic mice have deficits in spatial learning and memory associated with inflammation and brain atrophy. Evidences suggest that apoE4 is implicated in amyloid-beta accumulation, imbalance of cellular antioxidant system and in apoptotic phenomena. The mechanisms by which apoE4 interacts with other AD risk factors leading to an increased susceptibility to the dementia are still unknown. The aim of this research was to provide new insights into molecular mechanisms of AD neurodegeneration, investigating the effect of amyloid-beta peptides and apoE4 genotype on the modulation of genes and proteins differently involved in cellular processes related to aging and oxidative balance such as PIN1, SIRT1, PSEN1, BDNF, TRX1 and GRX1. In particular, we used human neuroblastoma cells exposed to amyloid-beta or apoE3 and apoE4 proteins at different time-points, and selected brain regions of human apoE3 and apoE4 targeted replacement mice, as in vitro and in vivo models, respectively. All genes and proteins studied in the present investigation are modulated by amyloid-beta and apoE4 in different ways, suggesting their involvement in the neurodegenerative mechanisms underlying the AD. Finally, these proteins might represent novel potential diagnostic and therapeutic targets in AD.
Resumo:
La terapia di resincronizzazione cardiaca (TRC) è un presidio non farmacologico che riduce la mortalità e la morbosità nei pazienti con scompenso refrattario alla terapia medica. La maggior parte dei dati riguardanti gli effetti della TRC coinvolgono i pazienti con le indicazioni consolidate seguenti: classe NYHA III-IV, ritardo della conduzione ventricolare (QRS>opp= 20 msec), disfunzione sistolica ventricolare sinistra (frazione di eiezione ventricolare sinistra >opp= 35%) e ritmo sinusale (RS). Mentre è noto che la fibrillazione atriale permanente (FA) sia presente in una porzione consistente dei pazienti con scompenso cardiaco, vi sono pochi dati riguardanti la sopravvivenza e gli effetti a lungo-termine della TRC in pazienti con scompenso cardiaco e fibrillazione atriale (FA); la maggior parte degli studi sono osservazionali ed hanno dimostrato che la TRC potrebbe conferire dei benefici a corto e medio termine anche in pazienti con FA permanente. Solo recentemente un ampio studio osservazionale ha descritto che, a lungo-termine, la TRC migliora significativamente la capacità funzionale, la frazione di eiezione e induce il rimodellamento inverso del ventricolo sinistro solamente in quei pazienti con FA dove la TRC viene combinata con l’ablazione del nodo atrio-ventricolare (NAV). La strategia ablativa del NAV infatti conferendo una stimolazione completa e costante, permette di eliminare gli effetti del ritmo spontaneo di FA (ritmo irregolare e tendenzialmente tachicardico) cheinterferisce in maniera importante con la stimolazione biventricolare in particolare durante gli sforzi fisici. Sulla base di queste premesse il presente studio si propone di valutare gli effetti a lungo-termine della TRC su pazienti con scompenso cardiaco e FA permanente focalizzando su due aspetti principali: 1) confrontando la sopravvivenza di pazienti con FA permanente rispetto ai pazienti in RS; 2) confrontando la sopravvivenza di pazienti in FA suddivisi secondo la modalità di controllo della frequenza con somministrazione di farmaci antiaritmici (gruppo FA-farm) oppure mediante controllo ablazione del NAV (gruppo FA-abl). Metodi e risultati: Sono presentati i dati di 1303 pazienti sottoposti consecutivamente ad impianto di dispositivo per la TRC e seguiti per un periodo mediano di 24 mesi. Diciotto pazienti sono stati persi durante il follow-up per cui la popolazione dello studio è rappresentata da una popolazione totale di 1295 pazienti di cui 1042 in RS e 243 (19%) in FA permanente. Nei pazienti con FA il controllo della frequenza cardiaca è stato effettuato mediante la somministrazione di farmaci anti-aritmici (gruppo FA-farm: 125 pazienti) oppure mediante ablazione del NAV (FA-abl: 118 pazienti). Rispetto ai pazienti in RS, i pazienti in FA permanente erano significativamente più vecchi, più spesso presentavano eziologia nonischemica, avevano una frazione di eiezione più elevata al preimpianto, una durata del QRS minore e erano più raramente trattati con un defibrillatore. Lungo un follow-up mediano di 24 mesi, 170/1042 pazienti in RS e 39/243 in FA sono deceduti (l’incidenza di mortalità a 1 anno era di 8,4% e 8,9%, rispettivamente). I rapporti di rischio derivanti dall’analisi multivariata con il 95% dell’intervallo di confidenza (HR, 95% CI) erano simili sia per la morte per tutte le cause che per la morte cardiaca (0.9 [0.57-1.42], p=0.64 e 1.00 [0.60-1.66] p=0.99, rispettivamente). Fra i pazienti con FA, il gruppo FA-abl presentava una durata media del QRS minore ed era meno frequentemente trattato con il defibrillatore impiantabile rispetto al gruppo FA-farm. Soli 11/118 pazienti del FA-abl sono deceduti rispetto a 28/125 nel gruppo FA-farm (mortalità cumulativa a 1 anno di 9,3% e 15,2% rispettivamente, p<0.001), con HR, 95% CI per FA-abl vs FA-farm di 0.15 [0.05-0.43],,p<0.001 per la mortalità per tutte le cause, di 0.18 [0.06-0.57], p=0.004 per la mortalità cardiaca, e di 0.09 [0.02-0.42], p<0.002 per la mortalità da scompenso cardiaco. Conclusioni: I pazienti con scompenso cardiaco e FA permanente trattati con la TRC presentano una simile sopravvivenza a lungo-termine di pazienti in RS. Nei pazienti in FA l’ablazione del NAV in aggiunta alla TRC migliora significativamente la sopravvivenza rispetto alla sola TRC; questo effetto è ottenuto primariamente attraverso una riduzione della morte per scompenso cardiaco.