5 resultados para Amidase inhibitor
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Background. Neuroblastoma is the most deadly solid tumor of childhood. In the 25% of cases it is associated with MYCN amplification (MA), resulting in the disregulation of several genes involved in cancer progression, chemotherapy resistance and poor prognosis causing the disregulation of several genes involved in cancer progression and chemotherapy resistance and resulting in a poor prognosis. Moreover, in this contest, therapy-related p53 mutations are frequently found in relapsed cases conferring an even stronger aggressiveness. For this reason, the actual therapy requires new antitumor molecules. Therefore, rapid, accurate, and reproducible preclinical models are needed to evaluate the evolution of the different subtypes and the efficacy of new pharmacological strategies. Procedures. We report the real-time tumorigenesis of MA Neuroblastoma mouse models: transgenic TH-MYCN mice and orthotopic xenograft models with either p53wt or p53mut, by non-invasive micro PET and bioluminescent imaging, respectively. Characterization of MYCN amplification and expression was performed on every collected sample. We tested the efficacy of a new MYCN inhibitor in vitro and in vivo. Results. MicroPET in TH-MYCN mice permitted the identification of Neuroblastoma at an early stage and offered a sensitive method to follow metabolic progression of tumors. The MA orthotopic model harboring multitherapy-related p53 mutations showed a shorter latency and progression and a stronger aggressiveness respect to the p53wt model. The presence of MA and overexpression was confirmed in each model and we saw a better survival in the TH-MYCN homozigous mice treated with the inhibitor. Conclusions. The mouse models obtained show characteristics of non-invasiveness, rapidity and sensitivity that make them suitable for the in vivo preclinical study of MA-NB. In particular, our firstly reported p53mut BLI xenograft orthotopic mouse model offers the possibility to evaluate the role of multitherapy-related p53 mutations and to validate new p53 independent therapies for this highly aggressive Neuroblastoma subtype. Moreover, we have shown potential clinical suitability of an antigene strategy through its cellular and molecular activity, ability to specifically inhibit transcription and in vivo efficacy with no evidence of toxicity.
Resumo:
Abnormal Hedgehog signaling is associated with human malignancies. Smo, a key player of that signaling, is the most suitable target to inhibit this pathway. To this aim several molecules, antagonists of Smo, have been synthesized, and some of them have started the phase I in clinical trials. Our hospital participated to one of these studies which investigated the oral administration of a new selective inhibitor of Smo (SMOi). To evaluate ex vivo SMOi efficacy and to identify new potential clinical biomarkers of responsiveness, we separated bone marrow CD34+ cells from 5 acute myeloid leukemia (AML), 1 myelofibrosis (MF), 2 blastic phases chronic myeloid leukemia (CML) patients treated with SMOi by immunomagnetic separation, and we analysed their gene expression profile using Affimetrix HG-U133 Plus 2.0 platform. This analysis, showed differential expression after 28 days start of therapy (p-value ≤ 0.05) of 1,197 genes in CML patients and 589 genes in AML patients. This differential expression is related to Hedgehog pathway with a p-value = 0.003 in CML patients and with a p-value = 0.0002 in AML patients, suggesting that SMOi targets specifically this pathway. Among the genes differentially expressed we observed strong up-regulation of Gas1 and Kif27 genes, which may work as biomarkers of responsiveness of SMOi treatment in CML CD34+ cells whereas Hedgehog target genes (such as Smo, Gli1, Gli2, Gli3), Bcl2 and Abca2 were down-regulated, in both AML and CML CD34+ cells. It has been reported that Bcl-2 expression could be correlated with cancer therapy resistance and that Hedgehog signaling modulate ATP-binding (ABC) cassette transporters, whose expression has been correlated with chemoresistance. Moreover we confirmed that in vitro SMOi treatment targets Hedgehog pathway, down-regulate ABC transporters, Abcg2 and Abcb1 genes, and in combination with tyrosine kinase inhibitors (TKIs) could revert the chemoresistance mechanism in K562 TKIs-resistant cell line.
Resumo:
The chronic myeloid leukemia complexity and the difficulties of disease eradication have recently led to the development of drugs which, together with the inhibitors of TK, could eliminate leukemia stem cells preventing the occurrence of relapses in patients undergoing transplantation. The Hedgehog (Hh) signaling pathway positively regulates the self-renewal and the maintenance of leukemic stem cells and not, and this function is evolutionarily conserved. Using Drosophila as a model, we studied the efficacy of the SMO inhibitor drug that inhibit the human protein Smoothened (SMO). SMO is a crucial component in the signal transduction of Hh and its blockade in mammals leads to a reduction in the disease induction. Here we show that administration of the SMO inhibitor to animals has a specific effect directed against the Drosophila ortholog protein, causing loss of quiescence and hematopoietic precursors mobilization. The SMO inhibitor induces in L3 larvae the appearance of melanotic nodules generated as response by Drosophila immune system to the increase of its hemocytes. The same phenotype is induced even by the dsRNA:SMO specific expression in hematopoietic precursors of the lymph gland. The drug action is also confirmed at cellular level. The study of molecular markers has allowed us to demonstrate that SMO inhibitor leads to a reduction of the quiescent precursors and to an increase of the differentiated cells. Moreover administering the inhibitor to heterozygous for a null allele of Smo, we observe a significant increase in the phenotype penetrance compared to administration to wild type animals. This helps to confirm the specific effect of the drug itself. These data taken together indicate that the study of inhibitors of Smo in Drosophila can represent a useful way to dissect their action mechanism at the molecular-genetic level in order to collect information applicable to the studies of the disease in humans.
Resumo:
Non-small-cell lung cancer (NSCLC) represents the leading cause of cancer death worldwide, and 5-year survival is about 16% for patients diagnosed with advanced lung cancer and about 70-90% when the disease is diagnosed and treated at earlier stages. Treatment of NSCLC is changed in the last years with the introduction of targeted agents, such as gefitinib and erlotinib, that have dramatically changed the natural history of NSCLC patients carrying specific mutations in the EGFR gene, or crizotinib, for patients with the EML4-ALK translocation. However, such patients represent only about 15-20% of all NSCLC patients, and for the remaining individuals conventional chemotherapy represents the standard choice yet, but response rate to thise type of treatment is only about 20%. Development of new drugs and new therapeutic approaches are so needed to improve patients outcome. In this project we aimed to analyse the antitumoral activity of two compounds with the ability to inhibit histone deacethylases (ACS 2 and ACS 33), derived from Valproic Acid and conjugated with H2S, in human cancer cell lines derived from NSCLC tissues. We showed that ACS 2 represents the more promising agent. It showed strong antitumoral and pro-apoptotic activities, by inducing membrane depolarization, cytocrome-c release and caspase 3 and 9 activation. It was able to reduce the invasive capacity of cells, through inhibition of metalloproteinases expression, and to induce a reduced chromatin condensation. This last characteristic is probably responsible for the observed high synergistic activity in combination with cisplatin. In conclusion our results highlight the potential role of the ACS 2 compound as new therapeutic option for NSCLC patients, especially in combination with cisplatin. If validated in in vivo models, this compound should be worthy for phase I clinical trials.
Resumo:
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors in the gastrointestinal tract. This work considers the pharmacological response in GIST patients treated with imatinib by two different angles: the genetic and somatic point of view. We analyzed polymorphisms influence on treatment outcome, keeping in consideration SNPs in genes involved in drug transport and folate pathway. Naturally, all these intriguing results cannot be considered as the only main mechanism in imatinib response. GIST mainly depends by oncogenic gain of function mutations in tyrosin kinase receptor genes, KIT or PDGFRA, and the mutational status of these two genes or acquisition of secondary mutation is considered the main player in GIST development and progression. To this purpose we analyzed the secondary mutations to better understand how these are involved in imatinib resistance. In our analysis we considered both imatinib and the second line treatment, sunitinib, in a subset of progressive patients. KIT/PDGFRA mutation analysis is an important tool for physicians, as specific mutations may guide therapeutic choices. Currently, the only adaptations in treatment strategy include imatinib starting dose of 800 mg/daily in KIT exon-9-mutated GISTs. In the attempt to individualize treatment, genetic polymorphisms represent a novelty in the definition of biomarkers of imatinib response in addition to the use of tumor genotype. Accumulating data indicate a contributing role of pharmacokinetics in imatinib efficacy, as well as initial response, time to progression and acquired resistance. At the same time it is becoming evident that genetic host factors may contribute to the observed pharmacokinetic inter-patient variability. Genetic polymorphisms in transporters and metabolism may affect the activity or stability of the encoded enzymes. Thus, integrating pharmacogenetic data of imatinib transporters and metabolizing genes, whose interplay has yet to be fully unraveled, has the potential to provide further insight into imatinib response/resistance mechanisms.