4 resultados para Ambient Scent

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypocretin 1 and 2 (HCRT, also called Orexin A and B) are neuropeptides released by neurons in the lateral hypothalamus. HCRT neurons widely project to the entire neuroaxis. HCRT neurons have been reported to participate in various hypothalamic physiological processes including cardiovascular functions, wake-sleep cycle, and they may also influence metabolic rate and the regulation of body temperature. HCRT neurons are lost in narcolepsy, a rare neurological disorder, characterized by excessive daytime sleepiness, cataplexy, sleep fragmentation and occurrence of sleep-onset rapid-eye-movement episodes. We investigated whether HCRT neurons mediate the sleep-dependent cardiovascular adaptations to changes in ambient temperature (Ta). HCRT-ataxin3 transgenic mice with genetic ablation of HCRT neurons (n = 11) and wild-type controls (n = 12) were instrumented with electrodes for sleep scoring and a telemetric blood pressure (BP) transducer (DSI, Inc.). Simultaneous sleep and BP recordings were performed on mice undisturbed and freely-behaving at 20 °C, 25 °C, and 30 °C for 48 hours at each Ta. Analysis of variance of BP indicated a significance of the main effects of wake-sleep state and Ta, their interaction effect, and the wake-sleep state x mouse strain interaction effect. BP increased with decreasing Ta. This effect of Ta on BP was significantly lower in rapid-eye-movement sleep (REMS) than either in non-rapid-eye-movement sleep (NREMS) or wakefulness regardless of the mouse strain. BP was higher in wakefulness than either in NREMS or REMS. This effect of sleep on BP was significantly reduced in mice lacking HCRT neurons at each Ta, particularly during REMS. These data suggest that HCRT neurons play a critical role in mediating the effects of sleep but not those of Ta on BP in mice. HCRT neurons may thus be part of the central neural pathways which mediate the phenomenon of blood pressure dipping on passing from wakefulness to sleep.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

n the last few years, the vision of our connected and intelligent information society has evolved to embrace novel technological and research trends. The diffusion of ubiquitous mobile connectivity and advanced handheld portable devices, amplified the importance of the Internet as the communication backbone for the fruition of services and data. The diffusion of mobile and pervasive computing devices, featuring advanced sensing technologies and processing capabilities, triggered the adoption of innovative interaction paradigms: touch responsive surfaces, tangible interfaces and gesture or voice recognition are finally entering our homes and workplaces. We are experiencing the proliferation of smart objects and sensor networks, embedded in our daily living and interconnected through the Internet. This ubiquitous network of always available interconnected devices is enabling new applications and services, ranging from enhancements to home and office environments, to remote healthcare assistance and the birth of a smart environment. This work will present some evolutions in the hardware and software development of embedded systems and sensor networks. Different hardware solutions will be introduced, ranging from smart objects for interaction to advanced inertial sensor nodes for motion tracking, focusing on system-level design. They will be accompanied by the study of innovative data processing algorithms developed and optimized to run on-board of the embedded devices. Gesture recognition, orientation estimation and data reconstruction techniques for sensor networks will be introduced and implemented, with the goal to maximize the tradeoff between performance and energy efficiency. Experimental results will provide an evaluation of the accuracy of the presented methods and validate the efficiency of the proposed embedded systems.