4 resultados para Ambient Air Pollution, China, Climate Change, Health Impact

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis analyzes an analysis of the risk perception of Italian paediatricians and parents regarding the impact of climate change on pediatric health. The consequences of climate change are now before our eyes; the recent pandemic has highlighted the impact that the destruction of ecosystems and global warming can have on our health. Fragile subjects will pay the most for the consequences of this crisis: children, the elderly, pregnant women. According to the World Health Organization (WHO), 88% of the disease burden linked to climate change falls on children under the age of 5. Climate change poses a challenge of equity not only between different areas of the world but also between generations: the worst consequences will weigh on those who have not caused damage to the ecosystem. This study began by studying the risk perceptions of the two main caregivers who deal with the child's health: parents and paediatricians. The study analyzed a mixed methods approach, exploiting quantitative and qualitative approaches. Two surveys were carried out in collaboration with the Italian Society of Pediatrics (SIP) and AGE, the Italian Parents' Association, using a tool already consolidated in the literature and adapted according to the needs of the thesis. Sixty semi-structured interviews were then conducted with pediatricians of different age groups and different regions of Italy. The collected data were then compared with the literature on the subject, in order to understand differences and similarities. This work is part of a still rather scarce, but growing, field of literature and represents the first study of this type in Italy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis focuses on the impact of climate change in alpine ecosystems stressing the response of high elevation terricolous lichen communities. In fact, despite the strong sensitivity of cryptogams to changes in climatic factors, information is still scanty.We collected records in 154 plots placed in the summit area of the Majella Massif. In Following a multitaxon approach, Chapter 1 includes cryptogams and vascular plants. We analysed patterns in species richness, beta diversity and functional composition. In Chapter 2, we analysed the relationships between climatic variables and phylogenetic diversity and structure indices. Chapter 3 provides a long-term response relative to the consequences of climate change on a representative terricolous lichen genus across the Alps. Chapter 4 explores the relationships between the species richness and the functional composition of lichen growing on two types of substrates (carbonatic and siliceous soils) along different elevation gradients in the Eastern Alps. Climate change could affect cryptogams and lichens much more than vascular plants in Mediterranean mountains. Contrasting species-climate and traits-climate relationships were found between lichens and bryophytes, suggesting that each group may be sensitive to different components of climate change. Ongoing climate change may also lead to a loss of genetic diversity at high elevation ranges in the Mediterranean mountains, pauperising the life history richness of lichens. Alpine results forecasted that moderate range loss dynamics will occur at low elevation and in peripheral areas of the alpine chain. Results also support the view that range dynamics could be associated with functional traits mainly related to water-use strategies, dispersal, and establishment ability. We also highlighted the importance of substrates as a main driver of both species’ richness and functional traits composition. A “trade-off” also occurs between stress tolerance and the competitive response of communities of terricolous lichens that grow above siliceous and carbonatic soils.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The severe accidents deriving from the impact of natural events on industrial installations have become a matter of growing concern in the last decades. In the literature, these events are typically referred to as Natech accidents. Several peculiarities distinguish them from conventional industrial accidents caused by internal factors, such as the possible occurrence of multiple simultaneous failures, and the enhanced probability of cascading events. The research project provides a comprehensive overview of Natech accidents that occurred in the Chemical and Process Industry, allowing for the identification of relevant aspects of Natech events. Quantified event trees and probability of ignition are derived from the collected dataset, providing a step forward in the quantitative risk assessment of Natech accidents. The investigation of past Natech accidents also demonstrated that wildfires may cause technological accidents. Climate change and global warming are promoting the conditions for wildfire development and rapid spread. Hence, ensuring the safety of industrial facilities exposed to wildfires is paramount. This was achieved defining safety distances between wildland vegetation and industrial equipment items. In addition, an innovative methodology for the vulnerability assessment of Natech and Domino scenarios triggered by wildfires was developed. The approach accounted for the dynamic behaviour of wildfire events and related technological scenarios. Besides, the performance of the emergency response and the related intervention time in the case of cascading events caused by natural events were evaluated. Overall, the tools presented in this thesis represent a step forward in the Quantitative Risk Assessment of Natech accidents. The methodologies developed also provide a solid basis for the definition of effective strategies for risk mitigation and reduction. These aspects are crucial to improve the resilience of industrial plants to natural hazards, especially considering the effects that climate change may have on the severity of such events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fruit crops are an important resource for food security, since more than being nutrient they are also a source of natural antioxidant compounds, such as polyphenols and vitamins. However, fruit crops are also among the cultivations threatened by the harmful effects of climate change This study had the objective of investigating the physiological effects of deficit irrigation on apple (2020-2021), sour cherry (2020-2021-2022) and apricot (2021-2022) trees, with a special focus on fruit nutraceutical quality. On each trial, the main physiological parameters were monitored along the growing season: i) stem and leaf water potentials; ii) leaf gas exchanges; iii) fruit and shoot growth. At harvest, fruit quality was evaluated especially in terms of fruit size, flesh firmness and soluble solids content. Moreover, it was performed: i) total phenolic content determination; ii) anthocyanidin concentration evaluation; and iii) untargeted metabolomic study. Irrigation scheduling in apricot, apple and sour cherry is surely overestimated by the decision support system available in Emilia-Romagna region. The water stress imposed on different fruit crops, each during two years of study, showed as a general conclusion that the decrease in the irrigation water did not show a straightforward decrease in plant physiological performance. This can be due to the miscalculation of the real water needs of the considered fruit crops. For this reason, there is the need to improve this important tool for an appropriate water irrigation management. Furthermore, there is also the need to study the behaviour of fruit crops under more severe deficit irrigations. In fact, it is likely that the application of lower water amounts will enhance the synthesis of specialized metabolites, with positive repercussion on human health. These hypotheses must be verified.