2 resultados para Amalric, of Bène, d. ca. 1206.
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
In this thesis the impact of R&D expenditures on firm market value and stock returns is examined. This is performed in a sample of European listed firms for the period 2000-2009. I apply different linear and GMM econometric estimations for testing the impact of R&D on market prices and construct country portfolios based on firms’ R&D expenditure to market capitalization ratio for studying the effect of R&D on stock returns. The results confirm that more innovative firms have a better market valuation,investors consider R&D as an asset that produces long-term benefits for corporations. The impact of R&D on firm value differs across countries. It is significantly modulated by the financial and legal environment where firms operate. Other firm and industry characteristics seem to play a determinant role when investors value R&D. First, only larger firms with lower financial leverage that operate in highly innovative sectors decide to disclose their R&D investment. Second, the markets assign a premium to small firms, which operate in hi-tech sectors compared to larger enterprises for low-tech industries. On the other hand, I provide empirical evidence indicating that generally highly R&D-intensive firms may enhance mispricing problems related to firm valuation. As R&D contributes to the estimation of future stock returns, portfolios that comprise high R&D-intensive stocks may earn significant excess returns compared to the less innovative after controlling for size and book-to-market risk. Further, the most innovative firms are generally more risky in terms of stock volatility but not systematically more risky than low-tech firms. Firms that operate in Continental Europe suffer more mispricing compared to Anglo-Saxon peers but the former are less volatile, other things being equal. The sectors where firms operate are determinant even for the impact of R&D on stock returns; this effect is much stronger in hi-tech industries.
Resumo:
The cardiomyocyte is a complex biological system where many mechanisms interact non-linearly to regulate the coupling between electrical excitation and mechanical contraction. For this reason, the development of mathematical models is fundamental in the field of cardiac electrophysiology, where the use of computational tools has become complementary to the classical experimentation. My doctoral research has been focusing on the development of such models for investigating the regulation of ventricular excitation-contraction coupling at the single cell level. In particular, the following researches are presented in this thesis: 1) Study of the unexpected deleterious effect of a Na channel blocker on a long QT syndrome type 3 patient. Experimental results were used to tune a Na current model that recapitulates the effect of the mutation and the treatment, in order to investigate how these influence the human action potential. Our research suggested that the analysis of the clinical phenotype is not sufficient for recommending drugs to patients carrying mutations with undefined electrophysiological properties. 2) Development of a model of L-type Ca channel inactivation in rabbit myocytes to faithfully reproduce the relative roles of voltage- and Ca-dependent inactivation. The model was applied to the analysis of Ca current inactivation kinetics during normal and abnormal repolarization, and predicts arrhythmogenic activity when inhibiting Ca-dependent inactivation, which is the predominant mechanism in physiological conditions. 3) Analysis of the arrhythmogenic consequences of the crosstalk between β-adrenergic and Ca-calmodulin dependent protein kinase signaling pathways. The descriptions of the two regulatory mechanisms, both enhanced in heart failure, were integrated into a novel murine action potential model to investigate how they concur to the development of cardiac arrhythmias. These studies show how mathematical modeling is suitable to provide new insights into the mechanisms underlying cardiac excitation-contraction coupling and arrhythmogenesis.