2 resultados para Aluminium Alloy

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent developments in piston engine technology have increased performance in a very significant way. Diesel turbocharged/turbo compound engines, fuelled by jet fuels, have great performances. The focal point of this thesis is the transformation of the FIAT 1900 jtd diesel common rail engine for the installation on general aviation aircrafts like the CESSNA 172. All considerations about the diesel engine are supported by the studies that have taken place in the laboratories of the II Faculty of Engineering in Forlì. This work, mostly experimental, concerns the transformation of the automotive FIAT 1900 jtd – 4 cylinders – turbocharged – diesel common rail into an aircraft engine. The design philosophy of the aluminium alloy basement of the spark ignition engine have been transferred to the diesel version while the pistons and the head of the FIAT 1900 jtd are kept in the aircraft engine. Different solutions have been examined in this work. A first V 90° cylinders version that can develop up to 300 CV and whose weight is 30 kg, without auxiliaries and turbocharging group. The second version is a development of e original version of the diesel 1900 cc engine with an optimized crankshaft, that employ a special steel, 300M, and that is verified for the aircraft requirements. Another version with an augmented stroke and with a total displacement of 2500 cc has been examined; the result is a 30% engine heavier. The last version proposed is a 1600 cc diesel engine that work at 5000 rpm, with a reduced stroke and capable of more than 200 CV; it was inspired to the Yamaha R1 motorcycle engine. The diesel aircraft engine design keeps the bore of 82 mm, while the stroke is reduced to 64.6 mm, so the engine size is reduced along with weight. The basement weight, in GD AlSi 9 MgMn alloy, is 8,5 kg. Crankshaft, rods and accessories have been redesigned to comply to aircraft standards. The result is that the overall size is increased of only the 8% when referred to the Yamaha engine spark ignition version, while the basement weight increases of 53 %, even if the bore of the diesel version is 11% lager. The original FIAT 1900 jtd piston has been slightly modified with the combustion chamber reworked to the compression ratio of 15:1. The material adopted for the piston is the aluminium alloy A390.0-T5 commonly used in the automotive field. The piston weight is 0,5 kg for the diesel engine. The crankshaft is verified to torsional vibrations according to the Lloyd register of shipping requirements. The 300M special steel crankshaft total weight is of 14,5 kg. The result reached is a very small and light engine that may be certified for general aviation: the engine weight, without the supercharger, air inlet assembly, auxiliary generators and high pressure body, is 44,7 kg and the total engine weight, with enlightened HP pump body and the titanium alloy turbocharger is less than 100 kg, the total displacement is 1365 cm3 and the estimated output power is 220 CV. The direct conversion of automotive piston engine to aircrafts pays too huge weight penalties. In fact the main aircraft requirement is to optimize the power to weight ratio in order to obtain compact and fast engines for aeronautical use: this 1600 common rail diesel engine version demonstrates that these results can be reached.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nei processi di progettazione e produzione tramite tecnologie di colata di componenti in alluminio ad elevate prestazioni, risulta fondamentale poter prevedere la presenza e la quantità di difetti correlabili a design non corretti e a determinate condizioni di processo. Fra le difettologie più comuni di un getto in alluminio, le porosità con dimensioni di decine o centinaia di m, note come microporosità, hanno un impatto estremamente negativo sulle caratteristiche meccaniche, sia statiche che a fatica. In questo lavoro, dopo un’adeguata analisi bibliografica, sono state progettate e messe a punto attrezzature e procedure sperimentali che permettessero la produzione di materiale a difettologia e microstruttura differenziata, a partire da condizioni di processo note ed accuratamente misurabili, che riproducessero la variabilità delle stesse nell’ambito della reale produzione di componenti fusi. Tutte le attività di progettazione delle sperimentazioni, sono state coadiuvate dall’ausilio di software di simulazione del processo fusorio che hanno a loro volta beneficiato di tarature e validazioni sperimentali ad hoc. L’apparato sperimentale ha dimostrato la propria efficacia nella produzione di materiale a microstruttura e difettologia differenziata, in maniera robusta e ripetibile. Utilizzando i risultati sperimentali ottenuti, si è svolta la validazione di un modello numerico di previsione delle porosità da ritiro e gas, ritenuto ad oggi allo stato dell’arte e già implementato in alcuni codici commerciali di simulazione del processo fusorio. I risultati numerici e sperimentali, una volta comparati, hanno evidenziato una buona accuratezza del modello numerico nella previsione delle difettologie sia in termini di ordini di grandezza che di gradienti della porosità nei getti realizzati.