4 resultados para Alternative control
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Biofilms on exposed monumental stones: mechanism of formation and development of new control methods
Resumo:
Within the stone monumental artefacts artistic fountains are extremely favorable to formation of biofilms, giving rise to biodegradation processes related with physical-chemical and visual aspect alterations, because of their particular exposure conditions. Microbial diversity of five fountains (two from Spain and three from Italy) was investigated. It was observed an ample similarity between the biodiversity of monumental stones reported in literature and that one found in studied fountains. Mechanical procedures and toxic chemical products are usually employed to remove such phototrophic patinas. Alternative methods based on natural antifouling substances are recently experimented in the marine sector, due to their very low environmental impact and for the bio settlement prevention on partially immersed structures of ships. In the present work groups of antibiofouling agents (ABAs) were selected from literature for their ability to interfere, at molecular level, with the microbial communication system “quorum sensing”, inhibiting the initial phase of biofilm formation. The efficacy of some natural antibiofoulants agents (ABAs) with terrestrial (Capsaicine - CS, Cinnamaldehyde - CI) and marine origin (Zosteric Acid - ZA, poly-Alkyl Pyridinium Salts – pAPS and Ceramium botryocarpum extract - CBE), incorporated into two commercial coatings (Silres BS OH 100 - S and Wacker Silres BS 290 - W) commonly used in stone conservation procedures were evaluated. The formation of phototrophic biofilms in laboratory conditions (on Carrara marble specimens and Sierra Elvira stone) and on two monumental fountains (Tacca’s Fountain 2 - Florence, Italy and Fountain from Patio de la Lindaraja - Alhambra Palace, Granada, Spain) has been investigated in the presence or absence of these natural antifouling agents. The natural antibiofouling agents, at tested concentrations, demonstrated a certain inhibitory effect. The silane-siloxane based silicone coating (W) mixing with ABAs was more suitable with respect to ethyl silicate coating (S) and proved efficacy against biofilm formation only when incompletely cured. The laboratory results indicated a positive action in inhibiting the patina formation, especially for poly-alkyl pyridinium salts, zosteric acid and cinnamaldehyde, while on site tests revealed a good effect for zosteric acid.
Resumo:
The main objective of this work was to investigate the impact of different hybridization concepts and levels of hybridization on fuel economy of a standard road vehicle where both conventional and non-conventional hybrid architectures are treated exactly in the same way from the point of view of overall energy flow optimization. Hybrid component models were developed and presented in detail as well as the simulations results mainly for NEDC cycle. The analysis was performed on four different parallel hybrid powertrain concepts: Hybrid Electric Vehicle (HEV), High Speed Flywheel Hybrid Vehicle (HSF-HV), Hydraulic Hybrid Vehicle (HHV) and Pneumatic Hybrid Vehicle (PHV). In order to perform equitable analysis of different hybrid systems, comparison was performed also on the basis of the same usable system energy storage capacity (i.e. 625kJ for HEV, HSF and the HHV) but in the case of pneumatic hybrid systems maximal storage capacity was limited by the size of the systems in order to comply with the packaging requirements of the vehicle. The simulations were performed within the IAV Gmbh - VeLoDyn software simulator based on Matlab / Simulink software package. Advanced cycle independent control strategy (ECMS) was implemented into the hybrid supervisory control unit in order to solve power management problem for all hybrid powertrain solutions. In order to maintain State of Charge within desired boundaries during different cycles and to facilitate easy implementation and recalibration of the control strategy for very different hybrid systems, Charge Sustaining Algorithm was added into the ECMS framework. Also, a Variable Shift Pattern VSP-ECMS algorithm was proposed as an extension of ECMS capabilities so as to include gear selection into the determination of minimal (energy) cost function of the hybrid system. Further, cycle-based energetic analysis was performed in all the simulated cases, and the results have been reported in the corresponding chapters.
Resumo:
Hybrid vehicles (HV), comprising a conventional ICE-based powertrain and a secondary energy source, to be converted into mechanical power as well, represent a well-established alternative to substantially reduce both fuel consumption and tailpipe emissions of passenger cars. Several HV architectures are either being studied or already available on market, e.g. Mechanical, Electric, Hydraulic and Pneumatic Hybrid Vehicles. Among the others, Electric (HEV) and Mechanical (HSF-HV) parallel Hybrid configurations are examined throughout this Thesis. To fully exploit the HVs potential, an optimal choice of the hybrid components to be installed must be properly designed, while an effective Supervisory Control must be adopted to coordinate the way the different power sources are managed and how they interact. Real-time controllers can be derived starting from the obtained optimal benchmark results. However, the application of these powerful instruments require a simplified and yet reliable and accurate model of the hybrid vehicle system. This can be a complex task, especially when the complexity of the system grows, i.e. a HSF-HV system assessed in this Thesis. The first task of the following dissertation is to establish the optimal modeling approach for an innovative and promising mechanical hybrid vehicle architecture. It will be shown how the chosen modeling paradigm can affect the goodness and the amount of computational effort of the solution, using an optimization technique based on Dynamic Programming. The second goal concerns the control of pollutant emissions in a parallel Diesel-HEV. The emissions level obtained under real world driving conditions is substantially higher than the usual result obtained in a homologation cycle. For this reason, an on-line control strategy capable of guaranteeing the respect of the desired emissions level, while minimizing fuel consumption and avoiding excessive battery depletion is the target of the corresponding section of the Thesis.
Resumo:
In this thesis two approaches were applied to achieve a double general objective. The first chapter was dedicated to the study of the distribution of the expression of genes of several bitter and fat receptor in several gastrointestinal tracts. A set of 7 genes for bitter taste and for 3 genes for fat taste was amplified with real-time PCR from mRNA extracted from 5 gastrointestinal segments of weaned pigs. The presence of gene expression for several chemosensing receptors for bitter and fat taste in different compartments of the stomach confirms that this organ should be considered a player for the early detection of bolus composition. In the second chapter we investigated in young pigs the distribution of butyrate-sensing olfactory receptor (OR51E1) receptor along the GIT, its relation with some endocrine markers, its variation with age, and after interventions affecting the gut environment and intestinal microbiota in piglets and in different tissues. Our results indicate that OR51E1 is strictly related to the normal GIT enteroendocrine activity. In the third chapter we investigated the differential gene expression between oxyntic and pyloric mucosa in seven starter pigs. The obtained data indicate that there is significant differential gene exression between oxintic of the young pig and pyloric mucosa and further functional studies are needed to confirm their physiological importance. In the last chapter, thymol, that has been proposed as an oral alternative to antibiotics in the feed of pigs and broilers, was introduced directly into the stomach of 8 weaned pigs and sampled for gastric oxyntic and pyloric mucosa. The analysis of the whole transcript expression shoes that the stimulation of gastric proliferative activity and the control of digestive activity by thymol can influence positively gastric maturation and function in the weaned pigs.