5 resultados para Almost Sure Convergence
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
In this work a multidisciplinary study of the December 26th, 2004 Sumatra earthquake has been carried out. We have investigated both the effect of the earthquake on the Earth rotation and the stress field variations associated with the seismic event. In the first part of the work we have quantified the effects of a water mass redistribution associated with the propagation of a tsunami wave on the Earth’s pole path and on the length-of-day (LOD) and applied our modeling results to the tsunami following the 2004 giant Sumatra earthquake. We compared the result of our simulations on the instantaneous rotational axis variations with some preliminary instrumental evidences on the pole path perturbation (which has not been confirmed yet) registered just after the occurrence of the earthquake, which showed a step-like discontinuity that cannot be attributed to the effect of a seismic dislocation. Our results show that the perturbation induced by the tsunami on the instantaneous rotational pole is characterized by a step-like discontinuity, which is compatible with the observations but its magnitude turns out to be almost one hundred times smaller than the detected one. The LOD variation induced by the water mass redistribution turns out to be not significant because the total effect is smaller than current measurements uncertainties. In the second part of this work of thesis we modeled the coseismic and postseismic stress evolution following the Sumatra earthquake. By means of a semi-analytical, viscoelastic, spherical model of global postseismic deformation and a numerical finite-element approach, we performed an analysis of the stress diffusion following the earthquake in the near and far field of the mainshock source. We evaluated the stress changes due to the Sumatra earthquake by projecting the Coulomb stress over the sequence of aftershocks taken from various catalogues in a time window spanning about two years and finally analyzed the spatio-temporal pattern. The analysis performed with the semi-analytical and the finite-element modeling gives a complex picture of the stress diffusion, in the area under study, after the Sumatra earthquake. We believe that the results obtained with the analytical method suffer heavily for the restrictions imposed, on the hypocentral depths of the aftershocks, in order to obtain the convergence of the harmonic series of the stress components. On the contrary we imposed no constraints on the numerical method so we expect that the results obtained give a more realistic description of the stress variations pattern.
Resumo:
The term Ambient Intelligence (AmI) refers to a vision on the future of the information society where smart, electronic environment are sensitive and responsive to the presence of people and their activities (Context awareness). In an ambient intelligence world, devices work in concert to support people in carrying out their everyday life activities, tasks and rituals in an easy, natural way using information and intelligence that is hidden in the network connecting these devices. This promotes the creation of pervasive environments improving the quality of life of the occupants and enhancing the human experience. AmI stems from the convergence of three key technologies: ubiquitous computing, ubiquitous communication and natural interfaces. Ambient intelligent systems are heterogeneous and require an excellent cooperation between several hardware/software technologies and disciplines, including signal processing, networking and protocols, embedded systems, information management, and distributed algorithms. Since a large amount of fixed and mobile sensors embedded is deployed into the environment, the Wireless Sensor Networks is one of the most relevant enabling technologies for AmI. WSN are complex systems made up of a number of sensor nodes which can be deployed in a target area to sense physical phenomena and communicate with other nodes and base stations. These simple devices typically embed a low power computational unit (microcontrollers, FPGAs etc.), a wireless communication unit, one or more sensors and a some form of energy supply (either batteries or energy scavenger modules). WNS promises of revolutionizing the interactions between the real physical worlds and human beings. Low-cost, low-computational power, low energy consumption and small size are characteristics that must be taken into consideration when designing and dealing with WSNs. To fully exploit the potential of distributed sensing approaches, a set of challengesmust be addressed. Sensor nodes are inherently resource-constrained systems with very low power consumption and small size requirements which enables than to reduce the interference on the physical phenomena sensed and to allow easy and low-cost deployment. They have limited processing speed,storage capacity and communication bandwidth that must be efficiently used to increase the degree of local ”understanding” of the observed phenomena. A particular case of sensor nodes are video sensors. This topic holds strong interest for a wide range of contexts such as military, security, robotics and most recently consumer applications. Vision sensors are extremely effective for medium to long-range sensing because vision provides rich information to human operators. However, image sensors generate a huge amount of data, whichmust be heavily processed before it is transmitted due to the scarce bandwidth capability of radio interfaces. In particular, in video-surveillance, it has been shown that source-side compression is mandatory due to limited bandwidth and delay constraints. Moreover, there is an ample opportunity for performing higher-level processing functions, such as object recognition that has the potential to drastically reduce the required bandwidth (e.g. by transmitting compressed images only when something ‘interesting‘ is detected). The energy cost of image processing must however be carefully minimized. Imaging could play and plays an important role in sensing devices for ambient intelligence. Computer vision can for instance be used for recognising persons and objects and recognising behaviour such as illness and rioting. Having a wireless camera as a camera mote opens the way for distributed scene analysis. More eyes see more than one and a camera system that can observe a scene from multiple directions would be able to overcome occlusion problems and could describe objects in their true 3D appearance. In real-time, these approaches are a recently opened field of research. In this thesis we pay attention to the realities of hardware/software technologies and the design needed to realize systems for distributed monitoring, attempting to propose solutions on open issues and filling the gap between AmI scenarios and hardware reality. The physical implementation of an individual wireless node is constrained by three important metrics which are outlined below. Despite that the design of the sensor network and its sensor nodes is strictly application dependent, a number of constraints should almost always be considered. Among them: • Small form factor to reduce nodes intrusiveness. • Low power consumption to reduce battery size and to extend nodes lifetime. • Low cost for a widespread diffusion. These limitations typically result in the adoption of low power, low cost devices such as low powermicrocontrollers with few kilobytes of RAMand tenth of kilobytes of program memory with whomonly simple data processing algorithms can be implemented. However the overall computational power of the WNS can be very large since the network presents a high degree of parallelism that can be exploited through the adoption of ad-hoc techniques. Furthermore through the fusion of information from the dense mesh of sensors even complex phenomena can be monitored. In this dissertation we present our results in building several AmI applications suitable for a WSN implementation. The work can be divided into two main areas:Low Power Video Sensor Node and Video Processing Alghoritm and Multimodal Surveillance . Low Power Video Sensor Nodes and Video Processing Alghoritms In comparison to scalar sensors, such as temperature, pressure, humidity, velocity, and acceleration sensors, vision sensors generate much higher bandwidth data due to the two-dimensional nature of their pixel array. We have tackled all the constraints listed above and have proposed solutions to overcome the current WSNlimits for Video sensor node. We have designed and developed wireless video sensor nodes focusing on the small size and the flexibility of reuse in different applications. The video nodes target a different design point: the portability (on-board power supply, wireless communication), a scanty power budget (500mW),while still providing a prominent level of intelligence, namely sophisticated classification algorithmand high level of reconfigurability. We developed two different video sensor node: The device architecture of the first one is based on a low-cost low-power FPGA+microcontroller system-on-chip. The second one is based on ARM9 processor. Both systems designed within the above mentioned power envelope could operate in a continuous fashion with Li-Polymer battery pack and solar panel. Novel low power low cost video sensor nodes which, in contrast to sensors that just watch the world, are capable of comprehending the perceived information in order to interpret it locally, are presented. Featuring such intelligence, these nodes would be able to cope with such tasks as recognition of unattended bags in airports, persons carrying potentially dangerous objects, etc.,which normally require a human operator. Vision algorithms for object detection, acquisition like human detection with Support Vector Machine (SVM) classification and abandoned/removed object detection are implemented, described and illustrated on real world data. Multimodal surveillance: In several setup the use of wired video cameras may not be possible. For this reason building an energy efficient wireless vision network for monitoring and surveillance is one of the major efforts in the sensor network community. Energy efficiency for wireless smart camera networks is one of the major efforts in distributed monitoring and surveillance community. For this reason, building an energy efficient wireless vision network for monitoring and surveillance is one of the major efforts in the sensor network community. The Pyroelectric Infra-Red (PIR) sensors have been used to extend the lifetime of a solar-powered video sensor node by providing an energy level dependent trigger to the video camera and the wireless module. Such approach has shown to be able to extend node lifetime and possibly result in continuous operation of the node.Being low-cost, passive (thus low-power) and presenting a limited form factor, PIR sensors are well suited for WSN applications. Moreover techniques to have aggressive power management policies are essential for achieving long-termoperating on standalone distributed cameras needed to improve the power consumption. We have used an adaptive controller like Model Predictive Control (MPC) to help the system to improve the performances outperforming naive power management policies.
Resumo:
Il problema affrontato nel lavoro riguarda l'allocazione della spesa tra gruppi di beni alimentari (domestici ed extra-domestici) e le modificazioni che tale allocazione ha subito nell’arco dell’ultimo decennio. L’obiettivo principale dell'analisi proposta è, quindi, di spiegare come variazioni della quota di spesa destinata alle componenti del consumo alimentare siano attribuibili a fattori strettamente economici, oltre che alle caratteristiche struttura socio-demografiche dei consumatori. Allo scopo di valutare l’allocazione inter-temporale della spesa individuale viene proposto come schema di analisi il sistema di domanda Almost Ideal di Deaton e Muellbauer (AIDS).
Resumo:
The fall of the Berlin Wall opened the way for a reform path – the transition process – which accompanied ten former Socialist countries in Central and South Eastern Europe to knock at the EU doors. By the way, at the time of the EU membership several economic and structural weaknesses remained. A tendency towards convergence between the new Member States (NMS) and the EU average income level emerged, together with a spread of inequality at the sub-regional level, mainly driven by the backwardness of the agricultural and rural areas. Several progresses were made in evaluating the policies for rural areas, but a shared definition of rurality is still missing. Numerous indicators were calculated for assessing the effectiveness of the Common Agricultural Policy and Rural Development Policy. Previous analysis on the Central and Eastern European countries found that the characteristics of the most backward areas were insufficiently addressed by the policies enacted; the low data availability and accountability at a sub-regional level, and the deficiencies in institutional planning and implementation represented an obstacle for targeting policies and payments. The next pages aim at providing a basis for understanding the connections between the peculiarities of the transition process, the current development performance of NMS and the EU role, with particular attention to the agricultural and rural areas. Applying a mixed methodological approach (multivariate statistics, non-parametric methods, spatial econometrics), this study contributes to the identification of rural areas and to the analysis of the changes occurred during the EU membership in Hungary, assessing the effect of CAP introduction and its contribution to the convergence of the Hungarian agricultural and rural. The author believes that more targeted – and therefore efficient – policies for agricultural and rural areas require a deeper knowledge of their structural and dynamic characteristics.
Resumo:
China is a large country characterized by remarkable growth and distinct regional diversity. Spatial disparity has always been a hot issue since China has been struggling to follow a balanced growth path but still confronting with unprecedented pressures and challenges. To better understand the inequality level benchmarking spatial distributions of Chinese provinces and municipalities and estimate dynamic trajectory of sustainable development in China, I constructed the Composite Index of Regional Development (CIRD) with five sub pillars/dimensions involving Macroeconomic Index (MEI), Science and Innovation Index (SCI), Environmental Sustainability Index (ESI), Human Capital Index (HCI) and Public Facilities Index (PFI), endeavoring to cover various fields of regional socioeconomic development. Ranking reports on the five sub dimensions and aggregated CIRD were provided in order to better measure the developmental degrees of 31 or 30 Chinese provinces and municipalities over 13 years from 1998 to 2010 as the time interval of three “Five-year Plans”. Further empirical applications of this CIRD focused on clustering and convergence estimation, attempting to fill up the gap in quantifying the developmental levels of regional comprehensive socioeconomics and estimating the dynamic convergence trajectory of regional sustainable development in a long run. Four clusters were benchmarked geographically-oriented in the map on the basis of cluster analysis, and club-convergence was observed in the Chinese provinces and municipalities based on stochastic kernel density estimation.