2 resultados para Algebraic lattices

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Process algebraic architectural description languages provide a formal means for modeling software systems and assessing their properties. In order to bridge the gap between system modeling and system im- plementation, in this thesis an approach is proposed for automatically generating multithreaded object-oriented code from process algebraic architectural descriptions, in a way that preserves – under certain assumptions – the properties proved at the architectural level. The approach is divided into three phases, which are illustrated by means of a running example based on an audio processing system. First, we develop an architecture-driven technique for thread coordination management, which is completely automated through a suitable package. Second, we address the translation of the algebraically-specified behavior of the individual software units into thread templates, which will have to be filled in by the software developer according to certain guidelines. Third, we discuss performance issues related to the suitability of synthesizing monitors rather than threads from software unit descriptions that satisfy specific constraints. In addition to the running example, we present two case studies about a video animation repainting system and the implementation of a leader election algorithm, in order to summarize the whole approach. The outcome of this thesis is the implementation of the proposed approach in a translator called PADL2Java and its integration in the architecture-centric verification tool TwoTowers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The theory of numerical invariants for representations can be generalized to measurable cocycles. This provides a natural notion of maximality for cocycles associated to complex hyperbolic lattices with values in groups of Hermitian type. Among maximal cocycles, the class of Zariski dense ones turns out to have a rigid behavior. An alternative implementation of numerical invariants can be given by using equivariant maps at the level of boundaries and by exploiting the Burger-Monod approach to bounded cohomology. Due to their crucial role in this theory, we prove existence results in two different contexts. Precisely, we construct boundary maps for non-elementary cocycles into the isometry group of CAT(0)-spaces of finite telescopic dimension and for Zariski dense cocycles into simple Lie groups. Then we approach numerical invariants. Our first goal is to study cocycles from complex hyperbolic lattices into the Hermitian group SU(p,q). Following the theory recently developed by Moraschini and Savini, we define the Toledo invariant by using the pullback along cocycles, also by involving boundary maps. For cocycles Γ × X → SU(p,q) with 1algebraic subgroup of PU(p,∞). Finally, we classify Zariski dense measurable cocycles Γ × X → G from finitely generated groups into Hermitian groups not of tube-type. Precisely, we show that the pullback of the Kahler class completely determines the cohomology class of such cocycles.