4 resultados para Al-Mg alloy
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Laser-based Powder Bed Fusion (L-PBF) technology is one of the most commonly used metal Additive Manufacturing (AM) techniques to produce highly customized and value-added parts. The AlSi10Mg alloy has received more attention in the L-PBF process due to its good printability, high strength/weight ratio, corrosion resistance, and relatively low cost. However, a deep understanding of the effect of heat treatments on this alloy's metastable microstructure is still required for developing tailored heat treatments for the L-PBF AlSi10Mg alloy to overcome the limits of the as-built condition. Several authors have already investigated the effects of conventional heat treatment on the microstructure and mechanical behavior of the L-PBF AlSi10Mg alloy but often overlooked the peculiarities of the starting supersatured and ultrafine microstructure induced by rapid solidification. For this reason, the effects of innovative T6 heat treatment (T6R) on the microstructure and mechanical behavior of the L-PBF AlSi10Mg alloy were assessed. The short solution soaking time (10 min) and the relatively low temperature (510 °C) reduced the typical porosity growth at high temperatures and led to a homogeneous distribution of fine globular Si particles in the Al matrix. In addition, it increased the amount of Mg and Si in the solid solution available for precipitation hardening during the aging step. The mechanical (at room temperature and 200 °C) and tribological properties of the T6R alloy were evaluated and compared with other solutions, especially with an optimized direct-aged alloy (T5 alloy). Results showed that the innovative T6R alloy exhibits the best mechanical trade-off between strength and ductility, the highest fatigue strength among the analyzed conditions, and interesting tribological behavior. Furthermore, the high-temperature mechanical performances of the heat-treated L-PBF AlSi10Mg alloy make it suitable for structural components operating in mild service conditions at 200 °C.
Resumo:
Le attività di ricerca svolte nel corso del dottorato di ricerca, sono state focalizzate principalmente sullo studio dell’evoluzione microstrutturale, delle proprietà meccaniche e tribologiche di una particolare lega da fonderia, EV31A, con alte percentuali di terre rare (Nd e Gd > 4% in peso). Le analisi microstrutturali sono state eseguite tramite microscopia ottica (OM), elettronica in scansione (SEM) ed elettronica in trasmissione (TEM), mentre le proprietà meccaniche sono state determinate attraverso prove di trazione e prove di fatica a flessione rotante. Al fine di incrementare le proprietà tribologiche delle leghe di magnesio è stata valutata l’efficacia del trattamento PEO sia sulla lega EV31A, sia sulle più comuni leghe AZ80 e AZ91D, effettuando test tribologici in modalità pattino su cilindro (Block on Ring). Infine è stato condotto uno studio sull’efficacia del trattamento di fusione superficiale laser (LSM), analizzandone gli effetti sia sull’evoluzione microstrutturale, sia sulle proprietà meccaniche e sulla resistenza a corrosione. Le attività svolte nel corso del dottorato di ricerca sono state svolte presso il Dipartimento di Ingegneria Industriale DIN della Scuola di Ingegneria e Architettura dell’Università di Bologna sotto la supervisione della Prof. ssa Lorella Ceschini.
Resumo:
The increasingly strict regulations on greenhouse gas emissions make the fuel economy a pressing factor for automotive manufacturers. Lightweighting and engine downsizing are two strategies pursued to achieve the target. In this context, materials play a key role since these limit the engine efficiency and components weight, due to their acceptable thermo-mechanical loads. Piston is one of the most stressed engine components and it is traditionally made of Al alloys, whose weakness is to maintain adequate mechanical properties at high temperature due to overaging and softening. The enhancement in strength-to-weight ratio at high temperature of Al alloys had been investigated through two approaches: increase of strength at high temperature or reduction of the alloy density. Several conventional and high performance Al-Si and Al-Cu alloys have been characterized from a microstructural and mechanical point of view, investigating the effects of chemical composition, addition of transition elements and heat treatment optimization, in the specific temperature range for pistons operations. Among the Al-Cu alloys, the research outlines the potentialities of two innovative Al-Cu-Li(-Ag) alloys, typically adopted for structural aerospace components. Moreover, due to the increased probability of abnormal combustions in high performance spark-ignition engines, the second part of the dissertation deals with the study of knocking damages on Al pistons. Thanks to the cooperation with Ferrari S.p.A. and Fluid Machinery Research Group - Unibo, several bench tests have been carried out under controlled knocking conditions. Knocking damage mechanisms were investigated through failure analyses techniques, starting from visual analysis up to detailed SEM investigations. These activities allowed to relate piston knocking damage to engine parameters, with the final aim to develop an on-board knocking controller able to increase engine efficiency, without compromising engine functionality. Finally, attempts have been made to quantify the knock-induced damages, to provide a numerical relation with engine working conditions.
Resumo:
L’attività svolta durante il dottorato è stata incentrata su due tematiche riguardanti: (i) la modifica della composizione chimica delle classiche leghe di alluminio da fonderia per incrementarne la resistenza e stabilità termica; (ii) lo studio del comportamento a fatica di acciai innovativi alto-resistenziali, allo scopo di valutarne il loro utilizzo per la produzione di alberi motore e distribuzione in sostituzione dei tradizionali acciai utilizzati dopo bonifica e trattamento superficiale di nitrurazione. La messa a punto di una lega di alluminio da fonderia con elevata resistenza in temperatura ha richiesto, oltre all’individuazione della composizione chimica, l’ottimizzazione del trattamento termico e una completa caratterizzazione meccanica statica a fatica sia a temperatura ambiente sia a 200°C. L’attività ha permesso di sviluppare una lega, ottenuta aggiungendo 1,3% in peso di rame alla classica lega A357 (Al-Si-Mg), cha ha mostrato avere proprietà meccaniche superiori a quelle delle tradizionali leghe Al-Si-Mg-Cu quali la A354 e C355 sia a temperatura ambiente che a 200 °C dopo lunga esposizione in temperatura. Per quanto riguarda gli acciai innovativi, dopo una preliminare analisi di mercato per individuare quali acciai potessero essere oggetto di studio, è stato valutato come migliorarne le prestazioni a fatica, anche in presenza d’intaglio, attraverso la scelta del trattamento termico più opportuno e del processo di pallinatura. I risultati delle caratterizzazioni microstrutturale e meccanica svolte hanno permesso di individuare due acciai (nomi commerciali K890 e ASP2017) ottenuti per metallurgia delle polveri, ad oggi utilizzati solo per la produzione di stampi e/o utensili, in grado di sostituire gli acciai con cui vengono oggi realizzati i componenti, senza la necessità di eseguire il trattamento di nitrurazione