7 resultados para Adenocarcinoma Teses

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gastroesophageal junction (GEJ) adenocarcinoma are uncommon before age of 40 years. While certain clinical, pathological and molecular features of GEJ adenocarcinoma in older patients have been extensively studied, these characteristics in the younger population remain to be determined. In the recent literature, a high sensitivity and specificity for the detection of dysplasia and esophageal adenocarcinoma was demonstrated by using multicolor fluorescence in situ hybridization (FISH) DNA probe set specific for the locus specific regions 9p21 (p16), 20q13.2 and Y chromosome. We evaluated 663 patients with GEJ adenocarcinoma and further divided them into 2 age-groups of <or= 40 and >or= 50 years, rispectively. FISH with selected DNA probe for Y chromosome, locus 9p21 (p16), and locus 20q13.2 was investigated with formalin fixed and parassin embedded tissue from surgical resections of 17 younger and 11 older patients. Signals were counted in > 100 cells with each given histopathological category. The chromosomal aberrations were then compared in the 2 age-groups with the focus on uninvolved squamous and columnar epithelium, intestinal metaplasia (Barrett's mucosa), glandular dysplasia, and adenocarcinoma. Comparisons were performed by the X2 test, Fisher's exact test, Student's t-test and Mann-Whitney U-test as appropriate. Survival was estimated by the Kaplan-Meier method with univariate analysis by the log-rank. Significance was taken at the 5% level. There was no difference in the surgical technique applied in both age groups and most patients underwent Ivor Lewis esophagectomy. Among clinical variables there was a higher incidence of smocking history in older patient group. We identified a progressive loss of Y chromosome from benign squamos epithelium to Barrett's mucosa and glandular dysplasia, and, ultimately, to a near complete loss in adenocarcinoma in both age groups. The young group revealed significantly more losses of 9p21 in both benign and neoplastic cells when compared to the older patients group. In addition, we demonstrated an increase in the percentage of cells showing gain of locus 20q13.2 with progression from benign epithelium through dysplasia to adenocarcinoma with almost the same trend in both the young and the older patients. When compared with the older age-group, younger patients with GEJ adenocarcinoma possess similar known demographics, environmental factors, clinical, and pathologic characteristics. The most commonly detected genetic aberrations of progressive Y chromosomal loss, 9p21 locus loss, and 20q13 gains were similar in the younger and older patients. However the rate of loss of 9p21 is significantly higher in young patients, in both the benign and the neoplastic cells. The loss of 9p21, and possibly, the subsequent inactivation of p16 gene may be one of the molecular mechanisms responsible for the accelerated neoplastic process in young patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

9-hydroxystearic acid (9-HSA) is an endogenous lipoperoxidation product and its administration to HT29, a colon adenocarcinoma cell line, induced a proliferative arrest in G0/G1 phase mediated by a direct activation of the p21WAF1 gene, bypassing p53. We have previously shown that 9-HSA controls cell growth and differentiation by inhibiting histone deacetylase 1 (HDAC1) activity, showing interesting features as a new anticancer drug. The interaction of 9-HSA with the catalytic site of the 3D model has been tested with a docking procedure: noticeably, when interacting with the site, the (R)-9-enantiomer is more stable than the (S) one. Thus, in this study, (R)- and (S)-9-HSA were synthesized and their biological activity tested in HT29 cells. At the concentration of 50 M (R)-9-HSA showed a stronger antiproliferative effect than the (S) isomer, as indicated by the growth arrest in G0/G1. The inhibitory effect of (S)-9-HSA on HDAC1, HDAC2 and HDAC3 activity was less effective than that of the (R)-9-HSA in vitro, and the inhibitory activity of both the (R)- and the (S)-9-HSA isomer, was higher on HDAC1 compared to HDAC2 and HDAC3, thus demonstrating the stereospecific and selective interaction of 9-HSA with HDAC1. In addition, histone hyperacetylation caused by 9-HSA treatment was examined by an innovative HPLC/ESI/MS method. Analysis on histones isolated from control and treated HT29 confirmed the higher potency of (R)-9-HSA compared to (S)-9-HSA, severely affecting H2A-2 and H4 acetylation. On the other side, it seemed of interest to determine whether the G0/G1 arrest of HT29 cell proliferation could be bypassed by the stimulation with the growth factor EGF. Our results showed that 9-HSA-treated cells were not only prevented from proliferating, but also showed a decreased [3H]thymidine incorporation after EGF stimulation. In this condition, HT29 cells expressed very low levels of cyclin D1, that didnt colocalize with HDAC1. These results suggested that the cyclin D1/HDAC1 complex is required for proliferation. Furthermore, in the effort of understanding the possible mechanisms of this effect, we have analyzed the degree of internalization of the EGF/EGFR complex and its interactions with HDAC1. EGF/EGFR/HDAC1 complex quantitatively increases in 9-HSA-treated cells but not in serum starved cells after EGF stimulation. Our data suggested that 9-HSA interaction with the catalytic site of the HDAC1 disrupts the HDAC1/cyclin D1 complex and favors EGF/EGFR recruitment by HDAC1, thus enhancing 9-HSA antiproliferative effects. In conclusion 9-HSA is a promising HDAC inhibitor with high selectivity and specificity, capable of inducing cell cycle arrest and histone hyperacetylation, but also able to modulate HDAC1 protein interaction. All these aspects may contribute to the potency of this new antitumor agent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of agents targeting EGFR represents a new frontier in colon cancer therapy. Among these, monoclonal antibodies (mAbs) and EGFR tyrosine kinase inhibitors (TKIs) seemed to be the most promising. However they have demonstrated low utility in therapy, the former being effective at toxic doses, the latter resulting inefficient in colon cancer. This thesis work presents studies on a new EGFR inhibitor, FR18, a molecule containing the same naphtoquinone core as shikonin, an agent with great anti-tumor potential. In HT-29, a human colon carcinoma cell line, flow cytometry, immunoprecipitation, and Western blot analysis, confocal spectral microscopy have demonstrated that FR18 is active at concentrations as low as 10 nM, inhibits EGF binding to EGFR while leaving unperturbed the receptor kinase activity. At concentration ranging from 30 nM to 5 M, it activates apoptosis. FR18 seems therefore to have possible therapeutic applications in colon cancer. In addition, surface plasmon resonance (SPR) investigation of the direct EGF/EGFR complex interaction using different experimental approaches is presented. A commercially available purified EGFR was immobilised by amine coupling chemistry on SPR sensor chip and its interaction to EGF resulted to have a KD = 368 0.65 nM. SPR technology allows the study of biomolecular interactions in real-time and label-free with a high degree of sensitivity and specificity and thus represents an important tool for drug discovery studies. On the other hand EGF/EGFR complex interaction represents a challenging but important system that can lead to significant general knowledge about receptor-ligand interactions, and the design of new drugs intended to interfere with EGFR binding activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several studies have shown epidemiologic, clinical, immune-histochemical and molecular differences among esophageal adenocarcinomas (EAC). Since pathogenesis and biology of this tumor are far to be well defined, our study aimed to examine intra- and inter-tumor heterogeneity and to solve crucial controversies through different molecular approaches. Target sequencing was performed for sorted cancer subpopulations from formalin embedded material obtained from 38 EACs, not treated with neoadjuvant therapy. 35 out 38 cases carried at least one somatic mutation, not present in the corresponding sorted stromal cells. 73.7% of cases carried mutations in TP53 and 10.5% in CDKN2A. Mutations in other genes occurred at lower frequency, including HNF1A, not previously associated with EAC. Sorting allowed us to isolate clones with different mutational loads and/or additional copy number amplifications, confirming the high intra-tumor heterogeneity of these cancers. In our cohort TP53 gene abnormalities correlated with a better survival (P = 0.028); conversely, loss of SMAD4 protein expression was associated with a higher recurrence rate (P = 0.015). Shifting the focus on the epigenetic characterization of EAC, miR-221 and miR-483-3p resulted upregulated from the MicroRNA Array card analysis and confirmed with further testing. The up-regulation of both miRNAs correlated with clinical outcomes, in particular with a reduced cancer-specific survival (miR483-3p P=0.0293; miR221 P=0.0059). In vitro analyses demonstrated an increase for miR-483-3p (fold-change=2.7) that appear to be inversely correlated with SMAD4 expression in FLO-1 cell-line. In conclusion, selective sorting allowed to define the real mutation status and to isolate different cancer subclones. MiRNA expression analysis revealed a significant up-regulation of miR-221 and miR-483-3p, which correlated with worst prognosis, implying that they can be considered oncogenic factors in EAC. Therefore, cell sorting technologies, coupled with next generation sequencing, and the analysis of microRNA profiles seem to be promising strategies to guide treatment and help classify cancer prognosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Esophageal adenocarcinoma (EAC) is a severe malignancy in terms of prognosis and mortality rate. Because its great genetic heterogeneity, disputes regarding classification, prevention and treatments are still unsolved. AIM: We investigated intra- and inter-EAC heterogeneity by defining EACs somatic mutational profile and the role of candidate microRNAs, to correlate the molecular profile of tumors to clinical outcomes and to identify biomarkers for classification. METHODS: 38 EAC cases were analyzed via high-throughput cell sorting technology combined with targeted sequencing and whole genome low-pass sequencing. Targeted sequencing of further 169 cases was performed to widen the study. miR221 and miR483-3p expression was profiled via qPCR in 112 EACs and correlation with clinical outcomes was investigated. RESULTS: 35/38 EACs carried at least one somatic mutation absent in stromal cells. TP53 was found mutated in 73.7% of cases. Selective sorting revealed tumor subclones with different mutational loads and copy number alterations, confirming the high intra-tumor heterogeneity of EAC. Mutations were in most cases at homozygous state, and we identified alterations that were missed with the whole-tumor analysis. Mutations in HNF1A gene, not previously associated with EAC, were identified in both cohorts. Higher expression of miR483-3p and miR221 was associated with poorer cancer specific survival (P=0.0293 and P=0.0059), and recurrence in the Lauren intestinal subtype (P=0.0459 and P=0.0002). Median expression levels of miRNAs were higher in patients with advanced tumor stages. The loss of SMAD4 immunoreactivity was significantly associated with poorer cancer specific survival and recurrence (P=0.0452; P=0.022 respectively). CONCLUSION: Combining selective sorting technology and next generation sequencing allowed to better define EAC inter- and intra-tumor heterogeneity. We identified HNF1A as a new mutated gene associated to EAC that could be involved in tumor progression and promising biomarkers such as SMAD4, miR221 and miR483-3p to identify patients at higher risk for more aggressive tumors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esophageal adenocarcinoma (EAC) is a severe cancer that has been on the rise in Western nations over the past few decades. It has a high mortality rate and the 5-year survival rate is only 35%45%. EAC has been included in a group of tumors with one of the highest rates of copy number alterations (CNAs), somatic structural rearrangements, high mutation frequency, with different mutational signatures, and with epigenetic mechanisms. The vast heterogeneity of EAC mutations makes it challenging to comprehend the biology that underlies tumor onset and development, identify prognostic biomarkers, and define a molecular classification to stratify patients. The only way to resolve the current disagreements is through an exhaustive molecular analysis of EAC. We examined the genetic profile of 164 patients' esophageal adenocarcinoma samples (without chemo-radiotherapy). The included patients did not receive neoadjuvant therapies, which can change the genetic and molecular composition of the tumor. Using next-generation sequencing technologies (NGS) at high coverage, we examined a custom panel of 26 cancer-related genes. Over the entire cohort, 337 variants were found, with the TP53 gene showing the most frequent alteration (67.27%). Poorer cancer-specific survival was associated with missense mutations in the TP53 gene (Log Rank P=0.0197). We discovered HNF1alpha gene disruptive mutations in 7 cases that were also affected by other gene changes. We started to investigate its role in EAC cell lines by silencing HNF1alpha to mimic our EAC cohort and we use Seahorse technique to analyze its role in the metabolism in esophageal cell. No significant changes were found in transfected cell lines. We conclude by finding that a particular class of TP53 mutations (missense changes) adversely impacted cancer-specific survival in EAC. HNF1alpha, a new EAC-mutated gene, was found, but more research is required to fully understand its function as a tumor suppressor gene.