2 resultados para Adaptive methods

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The deployment of ultra-dense networks is one of the most promising solutions to manage the phenomenon of co-channel interference that affects the latest wireless communication systems, especially in hotspots. To meet the requirements of the use-cases and the immense amount of traffic generated in these scenarios, 5G ultra-dense networks are being deployed using various technologies, such as distributed antenna system (DAS) and cloud-radio access network (C-RAN). Through these centralized densification schemes, virtualized baseband processing units coordinate the distributed access points and manage the available network resources. In particular, link adaptation techniques are shown to be fundamental to overall system operation and performance enhancement. The core of this dissertation is the result of an analysis and a comparison of dynamic and adaptive methods for modulation and coding scheme (MCS) selection applied to the latest mobile telecommunications standards. A novel algorithm based on the proportional-integral-derivative (PID) controller principles and block error rate (BLER) target has been proposed. Tests were conducted in a 4G and 5G system level laboratory and, by means of a channel emulator, the performance was evaluated for different channel models and target BLERs. Furthermore, due to the intrinsic sectorization of the end-users distribution in the investigated scenario, a preliminary analysis on the joint application of users grouping algorithms with multi-antenna and multi-user techniques has been performed. In conclusion, the importance and impact of other fundamental physical layer operations, such as channel estimation and power control, on the overall end-to-end system behavior and performance were highlighted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

That humans and animals learn from interaction with the environment is a foundational idea underlying nearly all theories of learning and intelligence. Learning that certain outcomes are associated with specific actions or stimuli (both internal and external), is at the very core of the capacity to adapt behaviour to environmental changes. In the present work, appetitive and aversive reinforcement learning paradigms have been used to investigate the fronto-striatal loops and behavioural correlates of adaptive and maladaptive reinforcement learning processes, aiming to a deeper understanding of how cortical and subcortical substrates interacts between them and with other brain systems to support learning. By combining a large variety of neuroscientific approaches, including behavioral and psychophysiological methods, EEG and neuroimaging techniques, these studies aim at clarifying and advancing the knowledge of the neural bases and computational mechanisms of reinforcement learning, both in normal and neurologically impaired population.