9 resultados para Acyclic Permutation
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
A permutation is said to avoid a pattern if it does not contain any subsequence which is order-isomorphic to it. Donald Knuth, in the first volume of his celebrated book "The art of Computer Programming", observed that the permutations that can be computed (or, equivalently, sorted) by some particular data structures can be characterized in terms of pattern avoidance. In more recent years, the topic was reopened several times, while often in terms of sortable permutations rather than computable ones. The idea to sort permutations by using one of Knuth’s devices suggests to look for a deterministic procedure that decides, in linear time, if there exists a sequence of operations which is able to convert a given permutation into the identical one. In this thesis we show that, for the stack and the restricted deques, there exists an unique way to implement such a procedure. Moreover, we use these sorting procedures to create new sorting algorithms, and we prove some unexpected commutation properties between these procedures and the base step of bubblesort. We also show that the permutations that can be sorted by a combination of the base steps of bubblesort and its dual can be expressed, once again, in terms of pattern avoidance. In the final chapter we give an alternative proof of some enumerative results, in particular for the classes of permutations that can be sorted by the two restricted deques. It is well-known that the permutations that can be sorted through a restricted deque are counted by the Schrӧder numbers. In the thesis, we show how the deterministic sorting procedures yield a bijection between sortable permutations and Schrӧder paths.
Resumo:
The topic of this work concerns nonparametric permutation-based methods aiming to find a ranking (stochastic ordering) of a given set of groups (populations), gathering together information from multiple variables under more than one experimental designs. The problem of ranking populations arises in several fields of science from the need of comparing G>2 given groups or treatments when the main goal is to find an order while taking into account several aspects. As it can be imagined, this problem is not only of theoretical interest but it also has a recognised relevance in several fields, such as industrial experiments or behavioural sciences, and this is reflected by the vast literature on the topic, although sometimes the problem is associated with different keywords such as: "stochastic ordering", "ranking", "construction of composite indices" etc., or even "ranking probabilities" outside of the strictly-speaking statistical literature. The properties of the proposed method are empirically evaluated by means of an extensive simulation study, where several aspects of interest are let to vary within a reasonable practical range. These aspects comprise: sample size, number of variables, number of groups, and distribution of noise/error. The flexibility of the approach lies mainly in the several available choices for the test-statistic and in the different types of experimental design that can be analysed. This render the method able to be tailored to the specific problem and the to nature of the data at hand. To perform the analyses an R package called SOUP (Stochastic Ordering Using Permutations) has been written and it is available on CRAN.
Resumo:
The first part of my thesis presents an overview of the different approaches used in the past two decades in the attempt to forecast epileptic seizure on the basis of intracranial and scalp EEG. Past research could reveal some value of linear and nonlinear algorithms to detect EEG features changing over different phases of the epileptic cycle. However, their exact value for seizure prediction, in terms of sensitivity and specificity, is still discussed and has to be evaluated. In particular, the monitored EEG features may fluctuate with the vigilance state and lead to false alarms. Recently, such a dependency on vigilance states has been reported for some seizure prediction methods, suggesting a reduced reliability. An additional factor limiting application and validation of most seizure-prediction techniques is their computational load. For the first time, the reliability of permutation entropy [PE] was verified in seizure prediction on scalp EEG data, contemporarily controlling for its dependency on different vigilance states. PE was recently introduced as an extremely fast and robust complexity measure for chaotic time series and thus suitable for online application even in portable systems. The capability of PE to distinguish between preictal and interictal state has been demonstrated using Receiver Operating Characteristics (ROC) analysis. Correlation analysis was used to assess dependency of PE on vigilance states. Scalp EEG-Data from two right temporal epileptic lobe (RTLE) patients and from one patient with right frontal lobe epilepsy were analysed. The last patient was included only in the correlation analysis, since no datasets including seizures have been available for him. The ROC analysis showed a good separability of interictal and preictal phases for both RTLE patients, suggesting that PE could be sensitive to EEG modifications, not visible on visual inspection, that might occur well in advance respect to the EEG and clinical onset of seizures. However, the simultaneous assessment of the changes in vigilance showed that: a) all seizures occurred in association with the transition of vigilance states; b) PE was sensitive in detecting different vigilance states, independently of seizure occurrences. Due to the limitations of the datasets, these results cannot rule out the capability of PE to detect preictal states. However, the good separability between pre- and interictal phases might depend exclusively on the coincidence of epileptic seizure onset with a transition from a state of low vigilance to a state of increased vigilance. The finding of a dependency of PE on vigilance state is an original finding, not reported in literature, and suggesting the possibility to classify vigilance states by means of PE in an authomatic and objectic way. The second part of my thesis provides the description of a novel behavioral task based on motor imagery skills, firstly introduced (Bruzzo et al. 2007), in order to study mental simulation of biological and non-biological movement in paranoid schizophrenics (PS). Immediately after the presentation of a real movement, participants had to imagine or re-enact the very same movement. By key release and key press respectively, participants had to indicate when they started and ended the mental simulation or the re-enactment, making it feasible to measure the duration of the simulated or re-enacted movements. The proportional error between duration of the re-enacted/simulated movement and the template movement were compared between different conditions, as well as between PS and healthy subjects. Results revealed a double dissociation between the mechanisms of mental simulation involved in biological and non-biologial movement simulation. While for PS were found large errors for simulation of biological movements, while being more acurate than healthy subjects during simulation of non-biological movements. Healthy subjects showed the opposite relationship, making errors during simulation of non-biological movements, but being most accurate during simulation of non-biological movements. However, the good timing precision during re-enactment of the movements in all conditions and in both groups of participants suggests that perception, memory and attention, as well as motor control processes were not affected. Based upon a long history of literature reporting the existence of psychotic episodes in epileptic patients, a longitudinal study, using a slightly modified behavioral paradigm, was carried out with two RTLE patients, one patient with idiopathic generalized epilepsy and one patient with extratemporal lobe epilepsy. Results provide strong evidence for a possibility to predict upcoming seizures in RTLE patients behaviorally. In the last part of the thesis it has been validated a behavioural strategy based on neurobiofeedback training, to voluntarily control seizures and to reduce there frequency. Three epileptic patients were included in this study. The biofeedback was based on monitoring of slow cortical potentials (SCPs) extracted online from scalp EEG. Patients were trained to produce positive shifts of SCPs. After a training phase patients were monitored for 6 months in order to validate the ability of the learned strategy to reduce seizure frequency. Two of the three refractory epileptic patients recruited for this study showed improvements in self-management and reduction of ictal episodes, even six months after the last training session.
Resumo:
Machine learning comprises a series of techniques for automatic extraction of meaningful information from large collections of noisy data. In many real world applications, data is naturally represented in structured form. Since traditional methods in machine learning deal with vectorial information, they require an a priori form of preprocessing. Among all the learning techniques for dealing with structured data, kernel methods are recognized to have a strong theoretical background and to be effective approaches. They do not require an explicit vectorial representation of the data in terms of features, but rely on a measure of similarity between any pair of objects of a domain, the kernel function. Designing fast and good kernel functions is a challenging problem. In the case of tree structured data two issues become relevant: kernel for trees should not be sparse and should be fast to compute. The sparsity problem arises when, given a dataset and a kernel function, most structures of the dataset are completely dissimilar to one another. In those cases the classifier has too few information for making correct predictions on unseen data. In fact, it tends to produce a discriminating function behaving as the nearest neighbour rule. Sparsity is likely to arise for some standard tree kernel functions, such as the subtree and subset tree kernel, when they are applied to datasets with node labels belonging to a large domain. A second drawback of using tree kernels is the time complexity required both in learning and classification phases. Such a complexity can sometimes prevents the kernel application in scenarios involving large amount of data. This thesis proposes three contributions for resolving the above issues of kernel for trees. A first contribution aims at creating kernel functions which adapt to the statistical properties of the dataset, thus reducing its sparsity with respect to traditional tree kernel functions. Specifically, we propose to encode the input trees by an algorithm able to project the data onto a lower dimensional space with the property that similar structures are mapped similarly. By building kernel functions on the lower dimensional representation, we are able to perform inexact matchings between different inputs in the original space. A second contribution is the proposal of a novel kernel function based on the convolution kernel framework. Convolution kernel measures the similarity of two objects in terms of the similarities of their subparts. Most convolution kernels are based on counting the number of shared substructures, partially discarding information about their position in the original structure. The kernel function we propose is, instead, especially focused on this aspect. A third contribution is devoted at reducing the computational burden related to the calculation of a kernel function between a tree and a forest of trees, which is a typical operation in the classification phase and, for some algorithms, also in the learning phase. We propose a general methodology applicable to convolution kernels. Moreover, we show an instantiation of our technique when kernels such as the subtree and subset tree kernels are employed. In those cases, Direct Acyclic Graphs can be used to compactly represent shared substructures in different trees, thus reducing the computational burden and storage requirements.
Resumo:
The ever-increasing spread of automation in industry puts the electrical engineer in a central role as a promoter of technological development in a sector such as the use of electricity, which is the basis of all the machinery and productive processes. Moreover the spread of drives for motor control and static converters with structures ever more complex, places the electrical engineer to face new challenges whose solution has as critical elements in the implementation of digital control techniques with the requirements of inexpensiveness and efficiency of the final product. The successfully application of solutions using non-conventional static converters awake an increasing interest in science and industry due to the promising opportunities. However, in the same time, new problems emerge whose solution is still under study and debate in the scientific community During the Ph.D. course several themes have been developed that, while obtaining the recent and growing interest of scientific community, have much space for the development of research activity and for industrial applications. The first area of research is related to the control of three phase induction motors with high dynamic performance and the sensorless control in the high speed range. The management of the operation of induction machine without position or speed sensors awakes interest in the industrial world due to the increased reliability and robustness of this solution combined with a lower cost of production and purchase of this technology compared to the others available in the market. During this dissertation control techniques will be proposed which are able to exploit the total dc link voltage and at the same time capable to exploit the maximum torque capability in whole speed range with good dynamic performance. The proposed solution preserves the simplicity of tuning of the regulators. Furthermore, in order to validate the effectiveness of presented solution, it is assessed in terms of performance and complexity and compared to two other algorithm presented in literature. The feasibility of the proposed algorithm is also tested on induction motor drive fed by a matrix converter. Another important research area is connected to the development of technology for vehicular applications. In this field the dynamic performances and the low power consumption is one of most important goals for an effective algorithm. Towards this direction, a control scheme for induction motor that integrates within a coherent solution some of the features that are commonly required to an electric vehicle drive is presented. The main features of the proposed control scheme are the capability to exploit the maximum torque in the whole speed range, a weak dependence on the motor parameters, a good robustness against the variations of the dc-link voltage and, whenever possible, the maximum efficiency. The second part of this dissertation is dedicated to the multi-phase systems. This technology, in fact, is characterized by a number of issues worthy of investigation that make it competitive with other technologies already on the market. Multiphase systems, allow to redistribute power at a higher number of phases, thus making possible the construction of electronic converters which otherwise would be very difficult to achieve due to the limits of present power electronics. Multiphase drives have an intrinsic reliability given by the possibility that a fault of a phase, caused by the possible failure of a component of the converter, can be solved without inefficiency of the machine or application of a pulsating torque. The control of the magnetic field spatial harmonics in the air-gap with order higher than one allows to reduce torque noise and to obtain high torque density motor and multi-motor applications. In one of the next chapters a control scheme able to increase the motor torque by adding a third harmonic component to the air-gap magnetic field will be presented. Above the base speed the control system reduces the motor flux in such a way to ensure the maximum torque capability. The presented analysis considers the drive constrains and shows how these limits modify the motor performance. The multi-motor applications are described by a well-defined number of multiphase machines, having series connected stator windings, with an opportune permutation of the phases these machines can be independently controlled with a single multi-phase inverter. In this dissertation this solution will be presented and an electric drive consisting of two five-phase PM tubular actuators fed by a single five-phase inverter will be presented. Finally the modulation strategies for a multi-phase inverter will be illustrated. The problem of the space vector modulation of multiphase inverters with an odd number of phases is solved in different way. An algorithmic approach and a look-up table solution will be proposed. The inverter output voltage capability will be investigated, showing that the proposed modulation strategy is able to fully exploit the dc input voltage either in sinusoidal or non-sinusoidal operating conditions. All this aspects are considered in the next chapters. In particular, Chapter 1 summarizes the mathematical model of induction motor. The Chapter 2 is a brief state of art on three-phase inverter. Chapter 3 proposes a stator flux vector control for a three- phase induction machine and compares this solution with two other algorithms presented in literature. Furthermore, in the same chapter, a complete electric drive based on matrix converter is presented. In Chapter 4 a control strategy suitable for electric vehicles is illustrated. Chapter 5 describes the mathematical model of multi-phase induction machines whereas chapter 6 analyzes the multi-phase inverter and its modulation strategies. Chapter 7 discusses the minimization of the power losses in IGBT multi-phase inverters with carrier-based pulse width modulation. In Chapter 8 an extended stator flux vector control for a seven-phase induction motor is presented. Chapter 9 concerns the high torque density applications and in Chapter 10 different fault tolerant control strategies are analyzed. Finally, the last chapter presents a positioning multi-motor drive consisting of two PM tubular five-phase actuators fed by a single five-phase inverter.
Resumo:
The main aim of my PhD project was the design and the synthesis of new pyrrolidine organocatalysts. New effective ferrocenyl pyrrolidine catalysts, active in benchmark organocatalytic reactions, has been developed. The ferrocenyl moiety, in combination with simple ethyl chains, is capable of fixing the enamine conformation addressing the approach trajectory of the nucleophile in the reaction. The results obtained represent an interesting proof-of-concept, showing for the first time the remarkable effectiveness of the ferrocenyl moiety in providing enantioselectivity through conformational selection. This approach could be viably employed in the rational design of ligands for metal or organocatalysts. Other hindered secondary amines has been prepared from alkylation of acyclic chiral nitroderivatives with alcohols in a highly diastereoselective fashion, giving access to functionalized, useful organocatalytic chiral pyrrolidines. A family of new pyrrolidines bearing sterogenic centers and functional groups can be readily accessible by this methodology. The second purpose of the project was to study in deep the reactivity of stabilized carbocations in new metal-free and organocatalytic reactions. By taking advantage of the results from the kinetic studies described by Mayr, a simple and effective procedure for the direct formylation of aryltetrafluoroborate salts, has been development. The coupling of a range of aryl- and heteroaryl- trifluoroborate salts with 1,3-benzodithiolylium tetrafluoroborate, has been attempted in moderate to good yields. Finally, a simple and general methodology for the enamine-mediated enantioselective α-alkylation of α-substituted aldehydes with 1,3-benzodithiolylium tetrafluoroborate has been reported. The introduction of the benzodithiole moiety permit the installation of different functional groups due to its chameleonic behaviour.
Resumo:
In this work we presented several aspects regarding the possibility to use readily available propargylic alcohols as acyclic precursors to develop new stereoselective [Au(I)]-catalyzed cascade reactions for the synthesis of highly complex indole architectures. The use of indole-based propargylic alcohols of type 1 in a stereoselective [Au(I)]-catalyzed hydroindolynation/immiun trapping reactive sequence opened access to a new class of tetracyclic indolines, dihydropyranylindolines A and furoindolines B. An enantioselective protocol was futher explored in order to synthesize this molecules with high yields and ee. The suitability of propargylic alcohols in [Au(I)]-catalyzed cascade reactions was deeply investigated by developing cascade reactions in which was possible not only to synthesize the indole core but also to achieve a second functionalization. Aniline based propargylic alcohols 2 were found to be modular acyclic precursors for the synthesis of [1,2-a] azepinoindoles C. In describing this reactivity we additionally reported experimental evidences for an unprecedented NHCAu(I)-vinyl specie which in a chemoselective fashion, led to the annulation step, synthesizing the N1-C2-connected seven membered ring. The chemical flexibility of propargylic alcohols was further explored by changing the nature of the chemical surrounding with different preinstalled N-alkyl moiety in propargylic alcohols of type 3. Particularly, in the case of a primary alcohol, [Au(I)] catalysis was found to be prominent in the synthesis of a new class of [4,3-a]-oxazinoindoles D while the use of an allylic alcohol led to the first example of [Au(I)] catalyzed synthesis and enantioselective functionalization of this class of molecules (D*). With this work we established propargylic alcohols as excellent acyclic precursor to developed new [Au(I)]-catalyzed cascade reaction and providing new catalytic synthetic tools for the stereoselective synthesis of complex indole/indoline architectures.
Resumo:
In many application domains data can be naturally represented as graphs. When the application of analytical solutions for a given problem is unfeasible, machine learning techniques could be a viable way to solve the problem. Classical machine learning techniques are defined for data represented in a vectorial form. Recently some of them have been extended to deal directly with structured data. Among those techniques, kernel methods have shown promising results both from the computational complexity and the predictive performance point of view. Kernel methods allow to avoid an explicit mapping in a vectorial form relying on kernel functions, which informally are functions calculating a similarity measure between two entities. However, the definition of good kernels for graphs is a challenging problem because of the difficulty to find a good tradeoff between computational complexity and expressiveness. Another problem we face is learning on data streams, where a potentially unbounded sequence of data is generated by some sources. There are three main contributions in this thesis. The first contribution is the definition of a new family of kernels for graphs based on Directed Acyclic Graphs (DAGs). We analyzed two kernels from this family, achieving state-of-the-art results from both the computational and the classification point of view on real-world datasets. The second contribution consists in making the application of learning algorithms for streams of graphs feasible. Moreover,we defined a principled way for the memory management. The third contribution is the application of machine learning techniques for structured data to non-coding RNA function prediction. In this setting, the secondary structure is thought to carry relevant information. However, existing methods considering the secondary structure have prohibitively high computational complexity. We propose to apply kernel methods on this domain, obtaining state-of-the-art results.
Resumo:
Can the potential availability of unemployment insurance (UI) affect the behavior of employed workers and the duration of their employment spells? After discussing few straightforward reasons why UI may affect employment duration, I apply a regression kink design (RKD) to address this question using linked employer-employee data from the Brazilian labor market. Exploiting the UI schedule, I find that potential benefit level significantly affects the duration of employment spells. This effect is local to low skilled workers and, surprisingly, indicates that a 1\% increase in unemployment benefits increases job duration by around 0.3\%. Such result is driven by the fact that higher UI decreases the probability of job quits, which are not covered by UI in Brazil. These estimates are robust to permutation tests and a number of falsification tests. I develop a reduced-form welfare formula to assess the economic relevance of this result. Based on that, I show that the positive effect on employment duration implies in a higher optimal benefit level. Moreover, the formula shows that the elasticity of employment duration impacts welfare just with the same weight as the well-known elasticity of unemployment duration to benefit level.