14 resultados para Activity-based costing system
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This work deals with the development of calibration procedures and control systems to improve the performance and efficiency of modern spark ignition turbocharged engines. The algorithms developed are used to optimize and manage the spark advance and the air-to-fuel ratio to control the knock and the exhaust gas temperature at the turbine inlet. The described work falls within the activity that the research group started in the previous years with the industrial partner Ferrari S.p.a. . The first chapter deals with the development of a control-oriented engine simulator based on a neural network approach, with which the main combustion indexes can be simulated. The second chapter deals with the development of a procedure to calibrate offline the spark advance and the air-to-fuel ratio to run the engine under knock-limited conditions and with the maximum admissible exhaust gas temperature at the turbine inlet. This procedure is then converted into a model-based control system and validated with a Software in the Loop approach using the engine simulator developed in the first chapter. Finally, it is implemented in a rapid control prototyping hardware to manage the combustion in steady-state and transient operating conditions at the test bench. The third chapter deals with the study of an innovative and cheap sensor for the in-cylinder pressure measurement, which is a piezoelectric washer that can be installed between the spark plug and the engine head. The signal generated by this kind of sensor is studied, developing a specific algorithm to adjust the value of the knock index in real-time. Finally, with the engine simulator developed in the first chapter, it is demonstrated that the innovative sensor can be coupled with the control system described in the second chapter and that the performance obtained could be the same reachable with the standard in-cylinder pressure sensors.
Resumo:
Context-aware computing is currently considered the most promising approach to overcome information overload and to speed up access to relevant information and services. Context-awareness may be derived from many sources, including user profile and preferences, network information, sensor analysis; usually context-awareness relies on the ability of computing devices to interact with the physical world, i.e. with the natural and artificial objects hosted within the "environment”. Ideally, context-aware applications should not be intrusive and should be able to react according to user’s context, with minimum user effort. Context is an application dependent multidimensional space and the location is an important part of it since the very beginning. Location can be used to guide applications, in providing information or functions that are most appropriate for a specific position. Hence location systems play a crucial role. There are several technologies and systems for computing location to a vary degree of accuracy and tailored for specific space model, i.e. indoors or outdoors, structured spaces or unstructured spaces. The research challenge faced by this thesis is related to pedestrian positioning in heterogeneous environments. Particularly, the focus will be on pedestrian identification, localization, orientation and activity recognition. This research was mainly carried out within the “mobile and ambient systems” workgroup of EPOCH, a 6FP NoE on the application of ICT to Cultural Heritage. Therefore applications in Cultural Heritage sites were the main target of the context-aware services discussed. Cultural Heritage sites are considered significant test-beds in Context-aware computing for many reasons. For example building a smart environment in museums or in protected sites is a challenging task, because localization and tracking are usually based on technologies that are difficult to hide or harmonize within the environment. Therefore it is expected that the experience made with this research may be useful also in domains other than Cultural Heritage. This work presents three different approaches to the pedestrian identification, positioning and tracking: Pedestrian navigation by means of a wearable inertial sensing platform assisted by the vision based tracking system for initial settings an real-time calibration; Pedestrian navigation by means of a wearable inertial sensing platform augmented with GPS measurements; Pedestrian identification and tracking, combining the vision based tracking system with WiFi localization. The proposed localization systems have been mainly used to enhance Cultural Heritage applications in providing information and services depending on the user’s actual context, in particular depending on the user’s location.
Resumo:
This thesis aimed at addressing some of the issues that, at the state of the art, avoid the P300-based brain computer interface (BCI) systems to move from research laboratories to end users’ home. An innovative asynchronous classifier has been defined and validated. It relies on the introduction of a set of thresholds in the classifier, and such thresholds have been assessed considering the distributions of score values relating to target, non-target stimuli and epochs of voluntary no-control. With the asynchronous classifier, a P300-based BCI system can adapt its speed to the current state of the user and can automatically suspend the control when the user diverts his attention from the stimulation interface. Since EEG signals are non-stationary and show inherent variability, in order to make long-term use of BCI possible, it is important to track changes in ongoing EEG activity and to adapt BCI model parameters accordingly. To this aim, the asynchronous classifier has been subsequently improved by introducing a self-calibration algorithm for the continuous and unsupervised recalibration of the subjective control parameters. Finally an index for the online monitoring of the EEG quality has been defined and validated in order to detect potential problems and system failures. This thesis ends with the description of a translational work involving end users (people with amyotrophic lateral sclerosis-ALS). Focusing on the concepts of the user centered design approach, the phases relating to the design, the development and the validation of an innovative assistive device have been described. The proposed assistive technology (AT) has been specifically designed to meet the needs of people with ALS during the different phases of the disease (i.e. the degree of motor abilities impairment). Indeed, the AT can be accessed with several input devices either conventional (mouse, touchscreen) or alterative (switches, headtracker) up to a P300-based BCI.
Resumo:
The purpose of the present PhD thesis is to investigate the properties of innovative nano- materials with respect to the conversion of renewable energies to electrical and chemical energy. The materials have been synthesized and characterized by means of a wide spectrum of morphological, compositional and photophysical techniques, in order to get an insight into the correlation between the properties of each material and the activity towards different energy conversion applications. Two main topics are addressed: in the first part of the thesis the light harvesting in pyrene functionalized silicon nanocrystals has been discussed, suggesting an original approach to suc- cessfully increase the absorption properties of these nanocrystals. The interaction of these nanocrystals was then studied, in order to give a deeper insight on the charge and energy extraction, preparing the way to implement SiNCs as active material in optoelectronic devices and photovoltaic cells. In addition to this, the luminescence of SiNCs has been exploited to increase the efficiency of conventional photovoltaic cells by means of two innovative architectures. Specifically, SiNCs has been used as luminescent downshifting layer in dye sensitized solar cells, and they were shown to be very promising light emitters in luminescent solar concentrators. The second part of the thesis was concerned on the production of hydrogen by platinum nanoparticles coupled to either electro-active or photo-active materials. Within this context, the electrocatalytic activity of platinum nanoparticles supported on exfoliated graphene has been studied, preparing an high-efficiency catalyst and disclosing the role of the exfoliation technique towards the catalytic activity. Furthermore, platinum nanoparticles have been synthesized within photoactive dendrimers, providing the first proof of concept of a dendrimer-based photocatalytic system for the hydrogen production where both sensitizer and catalyst are anchored to a single scaffold.
Resumo:
Biomarkers are biological indicators of human health conditions. Their ultra-sensitive quantification is of paramount importance in clinical monitoring and early disease diagnosis. Biosensors are simple and easy-to-use analytical devices and, in their world, electrochemiluminescence (ECL) is one of the most promising analytical techniques that needs an ever-increasing sensitivity for improving its clinical effectiveness. Scope of this project was the investigation of the ECL generation mechanisms for enhancing the ECL intensity also through the identification of suitable nanostructures. The combination of nanotechnologies, microscopy and ECL has proved to be a very successful strategy to improve the analytical efficiency of ECL in one of its most promising bioanalytical approaches, the bead-based immunoassay. Nanosystems, such as [Ru(bpy)3]2+-dye-doped nanoparticles (DDSNPs) and Bodipy Carbon Nanodots, have been used to improve the sensitivity of ECL techniques thanks to their advantageous and tuneable properties, reaching a signal increase of 750% in DDSNPs-bead-based immunoassay system. In this thesis, an investigation of size and distance effects on the ECL mechanisms was carried out through the innovative combination of ECL microscopy and electrochemical mapping of radicals. It allowed the discovery of an unexpected and highly efficient mechanistic path for ECL generation at small distances from the electrode surface. It was exploited and enhanced through the addition of a branched amine DPIBA to the usual coreactant TPrA solution for enhancing the ECL efficiency until a maximum of 128%. Finally, a beads-based immunoassay and an immunosensor specific for cardiac Troponin I were built exploiting previous results and carbon nanotubes features. They created a conductive layer around beads enhancing the signal by 70% and activating an ECL mechanism unobserved before in such systems. In conclusion, the combination of ECL microscopy and nanotechnology and the deep understanding of the mechanisms responsible for the ECL emission led to a great enhancement in the signal.
Resumo:
Chemistry can contribute, in many different ways to solve the challenges we are facing to modify our inefficient and fossil-fuel based energy system. The present work was motivated by the search for efficient photoactive materials to be employed in the context of the energy problem: materials to be utilized in energy efficient devices and in the production of renewable electricity and fuels. We presented a new class of copper complexes, that could find application in lighting techhnologies, by serving as luminescent materials in LEC, OLED, WOLED devices. These technologies may provide substantial energy savings in the lighting sector. Moreover, recently, copper complexes have been used as light harvesting compounds in dye sensitized photoelectrochemical solar cells, which offer a viable alternative to silicon-based photovoltaic technologies. We presented also a few supramolecular systems containing fullerene, e.g. dendrimers, dyads and triads.The most complex among these arrays, which contain porphyrin moieties, are presented in the final chapter. They undergo photoinduced energy- and electron transfer processes also with long-lived charge separated states, i.e. the fundamental processes to power artificial photosynthetic systems.
Resumo:
The Smart Grid needs a large amount of information to be operated and day by day new information is required to improve the operation performance. It is also fundamental that the available information is reliable and accurate. Therefore, the role of metrology is crucial, especially if applied to the distribution grid monitoring and the electrical assets diagnostics. This dissertation aims at better understanding the sensors and the instrumentation employed by the power system operators in the above-mentioned applications and studying new solutions. Concerning the research on the measurement applied to the electrical asset diagnostics: an innovative drone-based measurement system is proposed for monitoring medium voltage surge arresters. This system is described, and its metrological characterization is presented. On the other hand, the research regarding the measurements applied to the grid monitoring consists of three parts. The first part concerns the metrological characterization of the electronic energy meters’ operation under off-nominal power conditions. Original test procedures have been designed for both frequency and harmonic distortion as influence quantities, aiming at defining realistic scenarios. The second part deals with medium voltage inductive current transformers. An in-depth investigation on their accuracy behavior in presence of harmonic distortion is carried out by applying realistic current waveforms. The accuracy has been evaluated by means of the composite error index and its approximated version. Based on the same test setup, a closed-form expression for the measured current total harmonic distortion uncertainty estimation has been experimentally validated. The metrological characterization of a virtual phasor measurement unit is the subject of the third and last part: first, a calibrator has been designed and the uncertainty associated with its steady-state reference phasor has been evaluated; then this calibrator acted as a reference, and it has been used to characterize the phasor measurement unit implemented within a real-time simulator.
Resumo:
Interfacing materials with different intrinsic chemical-physical characteristics allows for the generation of a new system with multifunctional features. Here, this original concept is implemented for tailoring the functional properties of bi-dimensional black phosphorus (2D bP or phosphorene) and organic light-emitting transistors (OLETs). Phosphorene is highly reactive under atmospheric conditions and its small-area/lab-scale deposition techniques have hampered the introduction of this material in real-world applications so far. The protection of 2D bP against the oxygen by means of functionalization with alkane molecules and pyrene derivatives, showed long-term stability with respect to the bare 2D bP by avoiding remarkable oxidation up to 6 months, paving the way towards ultra-sensitive oxygen chemo-sensors. A new approach of deposition-precipitation heterogeneous reaction was developed to decorate 2D bP with Au nanoparticles (NP)s, obtaining a “stabilizer-free” that may broaden the possible applications of the 2D bP/Au NPs interface in catalysis and biodiagnostics. Finally, 2D bP was deposited by electrospray technique, obtaining oxidized-phosphorous flakes as wide as hundreds of µm2 and providing for the first time a phosphorous-based bidimensional system responsive to electromechanical stimuli. The second part of the thesis focuses on the study of organic heterostructures in ambipolar OLET devices, intriguing optoelectronic devices that couple the micro-scaled light-emission with electrical switching. Initially, an ambipolar single-layer OLET based on a multifunctional organic semiconductor, is presented. The bias-depending light-emission shifted within the transistor channel, as expected in well-balanced ambipolar OLETs. However, the emitted optical power of the single layer-based device was unsatisfactory. To improve optoelectronic performance of the device, a multilayer organic architecture based on hole-transporting semiconductor, emissive donor-acceptor blend and electron-transporting semiconductor was optimized. We showed that the introduction of a suitable electron-injecting layer at the interface between the electron-transporting and light-emission layers may enable a ≈ 2× improvement of efficiency at reduced applied bias.
Resumo:
Background: WGS is increasingly used as a first-line diagnostic test for patients with rare genetic diseases such as neurodevelopmental disorders (NDD). Clinical applications require a robust infrastructure to support processing, storage and analysis of WGS data. The identification and interpretation of SVs from WGS data also needs to be improved. Finally, there is a need for a prioritization system that enables downstream clinical analysis and facilitates data interpretation. Here, we present the results of a clinical application of WGS in a cohort of patients with NDD. Methods: We developed highly portable workflows for processing WGS data, including alignment, quality control, and variant calling of SNVs and SVs. A benchmark analysis of state-of-the-art SV detection tools was performed to select the most accurate combination for SV calling. A gene-based prioritization system was also implemented to support variant interpretation. Results: Using a benchmark analysis, we selected the most accurate combination of tools to improve SV detection from WGS data and build a dedicated pipeline. Our workflows were used to process WGS data from 77 NDD patient-parent families. The prioritization system supported downstream analysis and enabled molecular diagnosis in 32% of patients, 25% of which were SVs and suggested a potential diagnosis in 20% of patients, requiring further investigation to achieve diagnostic certainty. Conclusion: Our data suggest that the integration of SNVs and SVs is a main factor that increases diagnostic yield by WGS and show that the adoption of a dedicated pipeline improves the process of variant detection and interpretation.
Resumo:
On November 16, 2022, the NASA’s Space Launch System (SLS) has been launched for the first time in the context of Artemis-1 mission where, together with the Orion Multi-Purpose Crew Vehicle, a set of 10 CubeSats have been delivered into a translunar trajectory. Among the small satellites deployed during Artemis-1 there is ArgoMoon, a 6U CubeSat built by the Italian company Argotec and coordinated by Italian Space Agency (ASI). The primary goal of ArgoMoon is to capture images of the Interim Cryogenic Propulsion Stage. The ArgoMoon trajectory has been designed as a highly elliptical geocentric orbit, with several encounters with the Moon. In order to successfully fly ArgoMoon along the designed cis-lunar trajectory, a ground-based navigation system has been developed exploiting the guidance techniques also used for regular deep space missions. The navigation process is subdivided into Orbit Determi- nation (OD) and a Flight Path Control (FPC), and it is designed to follow the reference trajectory, prevent impacts with the Earth and the Moon, intensively test the navigation techniques, and guarantee the spacecraft disposal at the end of the mission. The work done in this thesis has accomplished the navigation of ArgoMoon, covering all aspects of the project life, from pre-launch design and analysis to actual operations. Firstly, the designed navigation process and the pre-mission assessment of its performance will be presented. Then, the results of the ArgoMoon navigation operations performed after the launch in November 2022 will be described in detail by discussing the main encountered challenges and the adopted solutions. The results of the operations confirmed the robustness of the designed navigation which allowed to accurately estimate the trajectory of ArgoMoon despite a series of complex events.
Resumo:
Recent technological advancements have played a key role in seamlessly integrating cloud, edge, and Internet of Things (IoT) technologies, giving rise to the Cloud-to-Thing Continuum paradigm. This cloud model connects many heterogeneous resources that generate a large amount of data and collaborate to deliver next-generation services. While it has the potential to reshape several application domains, the number of connected entities remarkably broadens the security attack surface. One of the main problems is the lack of security measures to adapt to the dynamic and evolving conditions of the Cloud-To-Thing Continuum. To address this challenge, this dissertation proposes novel adaptable security mechanisms. Adaptable security is the capability of security controls, systems, and protocols to dynamically adjust to changing conditions and scenarios. However, since the design and development of novel security mechanisms can be explored from different perspectives and levels, we place our attention on threat modeling and access control. The contributions of the thesis can be summarized as follows. First, we introduce a model-based methodology that secures the design of edge and cyber-physical systems. This solution identifies threats, security controls, and moving target defense techniques based on system features. Then, we focus on access control management. Since access control policies are subject to modifications, we evaluate how they can be efficiently shared among distributed areas, highlighting the effectiveness of distributed ledger technologies. Furthermore, we propose a risk-based authorization middleware, adjusting permissions based on real-time data, and a federated learning framework that enhances trustworthiness by weighting each client's contributions according to the quality of their partial models. Finally, since authorization revocation is another critical concern, we present an efficient revocation scheme for verifiable credentials in IoT networks, featuring decentralization, demanding minimum storage and computing capabilities. All the mechanisms have been evaluated in different conditions, proving their adaptability to the Cloud-to-Thing Continuum landscape.
Resumo:
The Internet of Vehicles (IoV) paradigm has emerged in recent times, where with the support of technologies like the Internet of Things and V2X , Vehicular Users (VUs) can access different services through internet connectivity. With the support of 6G technology, the IoV paradigm will evolve further and converge into a fully connected and intelligent vehicular system. However, this brings new challenges over dynamic and resource-constrained vehicular systems, and advanced solutions are demanded. This dissertation analyzes the future 6G enabled IoV systems demands, corresponding challenges, and provides various solutions to address them. The vehicular services and application requests demands proper data processing solutions with the support of distributed computing environments such as Vehicular Edge Computing (VEC). While analyzing the performance of VEC systems it is important to take into account the limited resources, coverage, and vehicular mobility into account. Recently, Non terrestrial Networks (NTN) have gained huge popularity for boosting the coverage and capacity of terrestrial wireless networks. Integrating such NTN facilities into the terrestrial VEC system can address the above mentioned challenges. Additionally, such integrated Terrestrial and Non-terrestrial networks (T-NTN) can also be considered to provide advanced intelligent solutions with the support of the edge intelligence paradigm. In this dissertation, we proposed an edge computing-enabled joint T-NTN-based vehicular system architecture to serve VUs. Next, we analyze the terrestrial VEC systems performance for VUs data processing problems and propose solutions to improve the performance in terms of latency and energy costs. Next, we extend the scenario toward the joint T-NTN system and address the problem of distributed data processing through ML-based solutions. We also proposed advanced distributed learning frameworks with the support of a joint T-NTN framework with edge computing facilities. In the end, proper conclusive remarks and several future directions are provided for the proposed solutions.
Resumo:
The PhD research activity has taken place in the space debris field. In detail, it is focused on the possibility of detecting space debris from the space based platform. The research is focused at the same time on the software and the hardware of this detection system. For the software, a program has been developed for being able to detect an object in space and locate it in the sky solving the star field. For the hardware, the possibility of adapting a ground telescope for space activity has been considered and it has been tested on a possible electronic board.