6 resultados para Acquired-resistance

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors in the gastrointestinal tract. This work considers the pharmacological response in GIST patients treated with imatinib by two different angles: the genetic and somatic point of view. We analyzed polymorphisms influence on treatment outcome, keeping in consideration SNPs in genes involved in drug transport and folate pathway. Naturally, all these intriguing results cannot be considered as the only main mechanism in imatinib response. GIST mainly depends by oncogenic gain of function mutations in tyrosin kinase receptor genes, KIT or PDGFRA, and the mutational status of these two genes or acquisition of secondary mutation is considered the main player in GIST development and progression. To this purpose we analyzed the secondary mutations to better understand how these are involved in imatinib resistance. In our analysis we considered both imatinib and the second line treatment, sunitinib, in a subset of progressive patients. KIT/PDGFRA mutation analysis is an important tool for physicians, as specific mutations may guide therapeutic choices. Currently, the only adaptations in treatment strategy include imatinib starting dose of 800 mg/daily in KIT exon-9-mutated GISTs. In the attempt to individualize treatment, genetic polymorphisms represent a novelty in the definition of biomarkers of imatinib response in addition to the use of tumor genotype. Accumulating data indicate a contributing role of pharmacokinetics in imatinib efficacy, as well as initial response, time to progression and acquired resistance. At the same time it is becoming evident that genetic host factors may contribute to the observed pharmacokinetic inter-patient variability. Genetic polymorphisms in transporters and metabolism may affect the activity or stability of the encoded enzymes. Thus, integrating pharmacogenetic data of imatinib transporters and metabolizing genes, whose interplay has yet to be fully unraveled, has the potential to provide further insight into imatinib response/resistance mechanisms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

From September 2005 to December 2006, in order to define the prevalence of Helicobacter pullorum in broiler chickens, laying hens and turkey, a total of 365 caecum contents of animals reared in 76 different farms were collected at the slaughterhouse. A caecum content of a ostrich was also sampled. In addition, with the aim of investigating the occurrence of H. pullorum in humans, 151 faeces were collected at the Sant’Orsola-Malpighi University Hospital of Bologna from patients suffering of gastroenteritis. A modified Steele–McDermott membrane filter method was used. Gram-negative curved rod bacteria were preliminary identified as H. pullorum by a PCR assay based on 16S rRNA, then subjected to a RFLP-PCR assay to distinguish between H. pullorum and H. canadensis. One isolate from each farm was randomly selected for phenotypic characterization by biochemical methods and 1D SDSPAGE analysis of whole cell proteins profiles. Minimum Inhibitory Concentration (MIC) for seven different antibiotics were also determined by agar dilution method. Moreover, to examine the intraspecific genomic variability, two strains isolated from 17 different farms were submitted to genotyping by Pulse-Field Gel Electrophoresis (PFGE). In order to assess the molecular basis of fluorquinolone resistance in H. pullorum, gyrA of H. pullorum CIP 104787T was sequenced and nucleotide sequences of the Quinolone Resistance Determining Region (QRDR) of a total of 18 poultry isolates, with different MIC values for ciprofloxacin and nalidixic acid, were compared. According to the PCR and PCR-RFLP results, 306 out of 366 animals examined were positive for H. pullorum (83,6%) and 96,1% of farms resulted infected. All positive samples showed a high number of colonies (>50) phenotipically consistent with H. pullorum on the first isolation media, which suggests that this microrganism, when present, colonizes the poultry caecum at an elevate load. No human sample resulted positive for H. pullorum. The 1D SDS-PAGE whole protein profile analysis showed high similarity among the 74 isolates tested and with the type strain H. pullorum CIP 104787T. Regarding the MIC values, a monomodal distribution was found for ampicillin, chloramphenicol, gentamicin and nalidixic acid, whereas a bimodal trend was noticed for erythromycin, ciprofloxacin and tetracycline (indicating an acquired resistance for these antibiotics). Applying the breakpoints indicated by the CSLI, we may assume that all the H. pullorum tested are sensitive only to gentamicin. The intraspecific genomic variability observed in this study confirm that this species don’t have a clonal population structure, as motioned by other autors. The 2490 bp gyrA gene of H. pullorum CIP104787T with an Open Reading Frame (ORF) encoding a polypeptide of 829 amino acids was for the first time sequenced and characterized. All ciprofloxacin resistant poultry isolates showed ACA®ATA (Thr®Ile) substitution at codon 84 of gyrA corresponding to codons of gyrA 86, 87 and 83 of the Campylobacter jejuni, H. pylori and Escherichia coli, respectively. This substitution was functionally confirmed to be associated with the ciprofloxacin resistant phenotype of poultry isolates. This is the first report of isolation of H. pullorum in turkey and in ostrich, indicating that poultry species are the reservoir of this potential zoonotic microorganisms. In order to understand the potential role as food-borne human pathogen of H. pullorum, further studies must be carried on.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Members of the genera Campylobacter and Helicobacter have been in the spotlight in recent decades because of their status as animals and/or humans pathogens, both confirmed and emerging, and because of their association with food-borne and zoonotic diseases. First observations of spiral shaped bacteria or Campylobacter-like organisms (CLO) date back to the end of the 19th century, however the lack of adequate isolation methods hampered further research. With the introduction of methods such as selective media and a filtration procedure during the 1970s led to a renewed interest in Campylobacter, especially as this enabled elucidation of their role in human hosts. On the other hand the classification and identification of these bacteria was troublesome, mainly because of the biochemical inertness and fastidious growth requirements. In 1991, the taxonomy of Campylobacter and related organisms was thoroughly revised, since this revision several new Campylobacter and Helicobacter species have been described. Moreover, thanks to the introduction of a polyphasic taxonomic practice, the classification of these novel species is well-founded. Indeed, a polyphasic approach was here followed for characterizing eight isolates obtained from rabbits epidemiologically not correlated and as a result a new Campylobacter species was proposed: Campylobacter cuniculorum (Chapter 1). Furthermore, there is a paucity of data regarding the occurrence of spiral shaped enteric flora in leporids. In order to define the prevalence both of this new species and other CLO in leporids (chapter 2), a total of 85 whole intestinal tracts of rabbits reared in 32 farms and 29 capture hares, epidemiologically not correlated, were collected just after evisceration at the slaughterhouse or during necroscopy. Examination and isolation methods were varied in order to increase the sensibility level of detection, and 100% of rabbit farms resulted positive for C. cuniculorum in high concentrations. Moreover, in 3.53% of the total rabbits examined, a Helicobacter species was detected. Nevertheless, all hares resulted negative both for Campylobacter or Helicobacter species. High prevalence of C. cuniculorum were found in rabbits, and in order to understand if this new species could play a pathological role, a study on some virulence determinants of C. cuniculorum was conducted (Chapter 3). Although this new species were able to adhere and invade, exert cytolethal distending toxin-like effects although at a low titre, a cdtB was not detected. There was no clear relationship between source of isolation or disease manifestation and possession of statistically significantly levels of particular virulence-associated factors although, cell adhesion and invasion occurred. Furthermore, antibiotic susceptibility was studied (chapter 4) in Campylobacter and in Escherichia coli strains, isolated from rabbits. It was possible to find acquired resistance of C. cuniculorum to enrofloxacin, ciprofloxacin and erytromycin. C. coli isolate was susceptible to all antimicrobial tested and moreover it is considered as a wild-type strain. Moreover, E. coli was found at low caecal concentration in rabbits and 30 phenotypes of antibiotic resistance were founded as well as the high rate of resistances to at least one antibiotic (98.1%). The majority of resistances were found from strains belonging to intensive farming system. In conclusion, in the course of the present study a new species isolated from rabbits was described, C. cuniculorum, and its high prevalence was established. Nevertheless, in hare samples no Campylobacter and Helicobacter species were detected. Some virulence determinants were further analyzed, however further studied are needed to understand the potential pathogenicity of this new species. On the other hand, antimicrobial susceptibility was monitored both in C. cuniculorum and indicator bacteria and acquired resistance was observed towards some antibiotics, indicating a possible role of rabbitries in the diffusion of antibiotic resistance. Further studies are necessary to describe and evaluate the eventual zoonotic role of Campylobacter cuniculorum.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nella presente tesi indaghiamo la potenzialità di LCM e Reverse Phase Protein microarray negli studi clinici. Si analizza la possibilità di creare una bio banca con line cellular primarie, al fine di conseguire drug test di sensibilità prima di decidere il trattamento da somministrare ai singoli pazienti. Sono stati ottenuti profili proteomici da biopsie pre e post terapia. I risultati dimostrano che questa piattaforma mostra il meccanismo di resistenza acquisito durante la terapia biologica. Questo ci ha portato ad analizzare una possibile stratificazione per pazienti con mCRC . I dati hanno rivelato distinti pathway di attivazione tra metastasi resecabile e non resecabili. I risultati mostrano inoltre due potenziali bersagli farmacologici. Ma la valutazione dell'intero tumore tramite singole biopsie sembra essere un problema a causa dell’eterogeneità intratumorale a livello genomico. Abbiamo indagato questo problema a livello dell'architettura del segnale in campioni di mCRC e ccRCC . I risultati indicano una somiglianza complessiva nei profili proteomici all'interno dello stesso tumore. Considerando che una singola biopsia è rappresentativa di un intera lesione , abbiamo studiato la possibilità di creare linee di cellule primarie, per valutare il profilo molecolare di ogni paziente. Fino ad oggi non c'era un protocollo per creare linee cellulari immortalizzate senza alcuna variazione genetica . abbiamo cosiderato, però, l'approccio innovativo delle CRCs. Ad oggi , non è ancora chiaro se tali cellule mimino il profilo dei tessuti oppure I passaggi in vitro modifichino i loro pathways . Sulla base di un modello di topo , i nostri dati mostrano un profilo di proteomica simile tra le linee di cellule e tessuti di topo LCM. In conclusione, i nostri dati dimostrano l'utilità della piattaforma LCM / RPPA nella sperimentazione clinica e la possibilità di creare una bio - banca di linee cellulari primarie, per migliorare la decisione del trattamento.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Among the different types of breast cancer (BC), the estrogen receptor positive (ER+) subtype, which requires estrogens for its growth and proliferation, is the most common, while triple negative BC, characterized by the absence of ER, progesterone receptor and human epidermal growth factor receptor 2, often leads to poor prognosis. First-line therapies for the treatment of ER+ BC act either by suppressing estrogen production, through the inhibition of aromatase (AR) enzyme, or by blocking estrogen prooncogenic activity, via the modulation/degradation of ERs. The serious side effects and the intrinsic or acquired resistance phenomena that arise with prolonged use of these drugs limit their therapeutic application, stimulating the search for new strategies to face this disease. In this context, the development of dual acting aromatase inhibitors, able to target both the orthosteric and the recently identified allosteric pockets of AR could be an opportunity to fight ER+ BC. Another promising strategy could be the development of multitarget compounds, targeting both AR and ERs. In this scenario, here we designed and synthesized two series of new xanthones or more flexible benzophenones as potential dual acting aromatase inhibitors. Moreover, inspired from tamoxifen metabolites and a literature compound endowed with activity on both AR and ER, different structurally related series of potential multitarget compounds were developed. The biological results showed that some of the new molecules were promising candidates for further development. It was recently observed that the lately discovered histamine H4 receptor is expressed in human breast tissue, displaying a key role in biological processes mediated by histamine such as cell proliferation, senescence, and apoptosis in malignant cells, representing a potential target in triple negative BC. Thus, a broad series of methyl quinazoline sulfonamides, carrying different functional groups on the sulfonamide moiety, were designed and synthesized as potential H4 receptor ligands.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

HER2 overexpression is observed in 20-30% of invasive breast carcinomas and it is correlated with poor prognosis. Although targeted therapies have revolutionized the treatment of HER2-positive breast cancer, a high number of patients presented primary or acquired resistance to monoclonal antibodies and tyrosine kinase inhibitors. Tumor heterogenicity, epithelial to mesenchymal transition (EMT) and cancer stem cells are key factors in target therapy resistance and tumor progression. The aim of this project was to discover alternative therapeutic strategies to over-come tumor resistance by harnessing immune system and looking for new targetable molecules. The results reported introduce a virus-like particles-based vaccine against HER2 as promising therapeutic approach to treat HER2-positive tumors. The high and persistent anti-HER2 antibody titers elicited by the vaccine significantly inhibited tumor growth and metastases onset. Furthermore, the polyclonal response induced by the vaccine also inhibited human HER2-positive breast cancer cells resistant to trastuzumab in vitro, suggesting its efficacy also on trastuzumab resistant tumors. To identify new therapeutic targets to treat progressed breast cancer, we took advantage from a dynamic model of HER2 expression obtained in our laboratory, in which HER2 loss and cancer progression were associated with the acquisition of EMT and stemness features. Targeting EMT-involved molecules, such as PDGFR-β, or the induction of epithelial markers, like E-cadherin, proved to be successful strategy to impair HER2-negative tumor growth. Density alterations, which might be induced by anti-HER2 target therapies, in cell culture condition of a cell line with a labile HER2 expression, caused HER2 loss probably as consequence of more aggressive subpopulations which prevail over the others. These subpopulations showed an increased EMT and stemness profile, confirming that targeting EMT-involved molecules or antigen expressed by cancer stem cells together with anti-HER2 target therapies is a valid strategy to inhibit HER2-positive cells and simultaneously prevent selection of more aggressive clone.