5 resultados para Acid catalysis

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In recent years the need for the design of more sustainable processes and the development of alternative reaction routes to reduce the environmental impact of the chemical industry has gained vital importance. Main objectives especially regard the use of renewable raw materials, the exploitation of alternative energy sources, the design of inherently safe processes and of integrated reaction/separation technologies (e.g. microreactors and membranes), the process intensification, the reduction of waste and the development of new catalytic pathways. The present PhD thesis reports results derived during a three years research period at the School of Chemical Sciences of Alma Mater Studiorum-University of Bologna, Dept. of Industrial Chemistry and Materials (now Dept. of Industrial Chemistry “Toso Montanari”), under the supervision of Prof. Fabrizio Cavani (Catalytic Processes Development Group). Three research projects in the field of heterogeneous acid catalysis focused on potential industrial applications were carried out. The main project, regarding the conversion of lignocellulosic materials to produce monosaccharides (important intermediates for production of biofuels and bioplatform molecules) was financed and carried out in collaboration with the Italian oil company eni S.p.A. (Istituto eni Donegani-Research Center for non-Conventional Energies, Novara, Italy) The second and third academic projects dealt with the development of green chemical processes for fine chemicals manufacturing. In particular, (a) the condensation reaction between acetone and ammonia to give triacetoneamine (TAA), and (b) the Friedel-Crafts acylation of phenol with benzoic acid were investigated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Water is a safe, harmless, and environmentally benign solvent. From an eco-sustainable chemistry perspective, the use of water instead of organic solvent is preferred to decrease environmental contamination. Moreover, water has unique physical and chemical properties, such as high dielectric constant and high cohesive energy density compared to most organic solvents. The different interactions between water and substrates, make water an interesting candidate as a solvent or co-solvent from an industrial and laboratory perspective. In this regard, organic reactions in aqueous media are of current interest. In addition, from practical and synthetic standpoints, a great advantage of using water is immediately evident, since it does not require any preliminary drying process. This thesis was found on this aspect of chemical research, with particular attention to the mechanisms which control organo and bio-catalysis outcome. The first part of the study was focused on the aldol reaction. In particular, for the first time it has been analyzed for the first time the stereoselectivity of the condensation reaction between 3-pyridincarbaldehyde and the cyclohexanone, catalyzed by morpholine and 4-tertbutyldimethylsiloxyproline, using water as sole solvent. This interest has resulted in countless works appeared in the literature concerning the use of proline derivatives as effective catalysts in organic aqueous environment. These studies showed good enantio and diastereoselectivities but they did not present an in depth study of the reaction mechanism. The analysis of the products diastereomeric ratios through the Eyring equation allowed to compare the activation parameters (ΔΔH≠ and ΔΔS≠) of the diastereomeric reaction paths, and to compare the different type of catalysis. While morpholine showed constant diasteromeric ratio at all temperatures, the O(TBS)-L-proline, showed a non-linear Eyring diagram, with two linear trends and the presence of an inversion temperature (Tinv) at 53 ° C, which denotes the presence of solvation effects by water. A pH-dependent study allowed to identify two different reaction mechanisms, and in the case of O(TBS)-L-proline, to ensure the formation of an enaminic species, as a keyelement in the stereoselective process. Moreover, it has been studied the possibility of using the 6- aminopenicillanic acid (6-APA) as amino acid-type catalyst for aldol condensation between cyclohexanone and aromatic aldehydes. A detailed analysis of the catalyst regarding its behavior in different organic solvents and pH, allowed to prove its potential as a candidate for green catalysis. Best results were obtained in neat conditions, where 6-APA proved to be an effective catalyst in terms of yields. The catalyst performance in terms of enantio- and diastereo-selectivity, was impaired by the competition between two different catalytic mechanisms: one via imine-enamine mechanism and one via a Bronsted-acid catalysis. The last part of the thesis was dedicated to the enzymatic catalysis, with particular attention to the use of an enzyme belonging to the class of alcohol dehydrogenase, the Horse Liver Alcohol Dehydrogenase (HLADH) which was selected and used in the enantioselective reduction of aldehydes to enantiopure arylpropylic alcohols. This enzyme has showed an excellent responsiveness to this type of aldehydes and a good tolerance toward organic solvents. Moreover, the fast keto-enolic equilibrium of this class of aldehydes that induce the stereocentre racemization, allows the dynamic-kinetic resolution (DKR) to give the enantiopure alcohol. By analyzing the different reaction parameters, especially the pH and the amount of enzyme, and adding a small percentage of organic solvent, it was possible to control all the parameters involved in the reaction. The excellent enatioselectivity of HLADH along with the DKR of arylpropionic aldehydes, allowed to obtain the corresponding alcohols in quantitative yields and with an optical purity ranging from 64% to >99%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this thesis was to investigate the synthesis of enantiomerically enriched heterocycles and dehydro-β-amino acid derivatives which can be used as scaffolds or intermediates of biologically active compounds, in particular as novel αvβ3 and α5β1 integrin ligands. The starting materials of all the compounds here synthesized are alkylideneacetoacetates. Alkylidene derivates are very usefull compounds, they are usually used as unsaturated electrophiles and they have the advantage of introducing different kind of functionality that may be further elaborated. In chapter 1, regio- and stereoselective allylic amination of pure carbonates is presented. The reaction proceeds via uncatalyzed or palladium-catalyzed conditions and affords enantiopure dehydro-β-amino esters that are useful precursor of biologically active compounds. Chapter 2 illustrates the synthesis of substituted isoxazolidines and isoxazolines via Michael addition followed by intramolecular hemiketalisation. The investigation on the effect of the Lewis acid catalysis on the regioselectivity of the addition it also reported. Isoxazolidines and isoxazolines are interesting heterocyclic compounds that may be regarded as unusual constrained -amino acids or as furanose mimetics. The synthesis of unusual cyclic amino acids precursors, that may be envisaged as proline analogues, as scaffolds for the design of bioactive peptidomimetics is presented in chapter 3. The synthesis of 2-substituted-3,4-dehydropyrrole derivatives starting from allylic carbonates via a two step allylic amination/ring closing metathesis (RCM) protocol is carried out. The reaction was optimized by testing different Grubbs’ catalysts and carbamate nitrogen protecting groups. Moreover, in view of a future application of these dehydro-β-amino acids as central core of peptidomimetics , the malonate chain was also used to protect nitrogen prior to RCM. Finally, chapter 4 presents the synthesis of two novel different classes of integrin antagonists, one derived from dehydro-β-amino acid prepared as described in chapter 1 and the other one has isoxazolidines synthesized in chapter 2 as rigid constrained core. Since that these compounds are promising RGD mimetics for αvβ3 and α5β1 integrins, they have been submitted to biological assay. and to interpret on a molecular basis their different affinities for the αvβ3 receptor, docking studies were performed using Glide program.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of imidazolium salts of the type [BocNHCH2CH2ImR]X (Boc = t-Bu carbamates; Im = imidazole) (R = Me, X = I, 1a; R = Bn, X = Br, 1b; R = Trityl, X = Cl, 1c) and [BnImR’]X (R’ = Me, X = Br, 1d; R’ = Bn, X = Br, 1e; R’ = Trityl, X = Cl, 1g; R’ = tBu, X = Br, 1h) bearing increasingly bulky substituents were synthetized and characterized. Subsequently, these precursors were employed in the synthesis of silver(I)-N-heterocyclic (NHC) complexes as transmetallating reagents for the preparation of rhodium(I) complexes [RhX(NBD)(NHC)] (NHC = 1-(2-NHBoc-ethyl)-3-R-imidazolin-2-ylidene; X = Cl; R = Me, 4a; R = Bn, 4b; R = Trityl, 4c; X = I, R = Me, 5a; NHC = 1-Bn-3-R’-imidazolin-2-ylidene; X = Cl; R’ = Me, 4d, R’ = Bn, 4e, R’ = Trityl, 4g; R’ = tBu, 4h). VT NMR studies of these complexes revealed a restricted rotation barriers about the metal-carbene bond. While the rotation barriers calculated for the complexes in which R = Me, Bn (4a,b,d,e and 5a) matched the experimental values, this was not true for the complexes 4c,g, bearing a trityl group for which the values are much smaller than the calculated ones. Energy barriers for 4c,g, derived from a line shape simulation, showed a strong dependence on the temperature while for 4h the rotational energy barrier is stopped at room temperature. The catalytic activity of the new rhodium compounds was investigated in the hydrosilylation of terminal alkynes and in the addition of phenylboronic acid to benzaldehyde. The imidazolium salts 1d,e were also employed in the synthesis of new iron(II)-NHC complexes. Finally, during a six-months stay at the University of York a new ligand derived from Norharman was prepared and employed in palladium-mediated cross-coupling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The project of this Ph.D. thesis is based on a co-supervised collaboration between Università di Bologna, ALMA MATER STUDIORUM (Italy) and Instituto de Tecnología Química, Universitat Politècnica de València ITQ-UPV (Spain). This Ph.D. thesis is about the synthesis, characterization and catalytic testing of complex mixed-oxide catalysts mainly related to the family of Hexagonal Tungsten Bronzes (HTBs). These materials have been little explored as catalysts, although they have a great potential as multifunctional materials. Their peculiar acid properties can be coupled to other functionalities (e.g. redox sites) by isomorphous substitution of tungsten atoms with other transition metals such as vanadium, niobium and molybdenum. In this PhD thesis, it was demonstrated how it is possible to prepare substituted-HTBs by hydrothermal synthesis; these mixed-oxide were fully characterize by a number of physicochemical techniques such as XPS, HR-TEM, XAS etc. They were also used as catalysts for the one-pot glycerol oxidehydration to acrylic acid; this reaction might represent a viable chemical route to solve the important issue related to the co-production of glycerin along the biodiesel production chain. Acrylic acid yields as high as 51% were obtained and important structure-reactivity correlations were proved to govern the catalytic performance; only fine tuning of acid and redox properties as well as the in-framework presence of vanadium are fundamental to achieve noteworthy yields into the acid monomer. The overall results reported herein might represent an important contribution for future applications of HTBs in catalysis as well as a general guideline for a multifaceted approach for their physicochemical characterization.