2 resultados para Achilles

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: Recent knowledge regarding tissue biology highlights a complex regulation of growth factors in reaction to tissue damage. Platelet Rich Plasma (P.R.P.), containing a natural pool of growth factors, can be obtained in a simple and minimally invasive way and be applied to the lesion site. The aim of this study is to explore this novel approach to treat cartilage degenerative lesions of the knee and tendon chronic lesions( patellar tendon, and achilles tendon). In this study we evaluated if the treatment with PRP injections can reduce pain and increase function in cases of patellar tendinosis (Jumper’s Knee), in chronic achilles tendinopathy and in patients with cartilage injuries of the knee. Materials and Methods: 40 patients with cartilage lesion of the knee, 28 male and 12 female with mean age 47 y. (min 18- max 52 years), were treated and prospectively evaluated at a minimum 6 months follow-up; in the same way, 12 patients with achilles tendon lesion (8 male and 4 female) with mean age 44,5 y. (min 32-max 58 years) and 10 patients with “Jumper’s Knee” (8 male and 2 female) with mean age 23,2 y. (min 18-max 37 years), were evaluated at 6 months follow up. The procedure involved 3 multiple injections , performed every two weeks. All patients were clinically evaluated at the end of the treatment and at 6 months follow up. IKDC, SF36, EQ-VAS, scores were used for clinical evaluation and patient satisfaction and functional status were also recorded. Results: Statistical analysis showed a significant improvement in the SF36 questionnaire in all parameters evaluated at the end of the therapy and 6 months follow-up in both group(tendinopathies and chondral lesions), and in the EQ VAS and IKDC score (paired T-test, p<0.0005) from basal evaluation to the end of the therapy, and a further improvement was present at 6 months follow-up. Whereas a higher improvement of the sport activity level was achieved in the “Jumper’s Knee” group. No complications related to the injections or severe adverse events were observed during the treatment and follow up period. Conclusion: PRP inhibits excess inflammation, apoptosis, and metalloproteinase activity. These interactive pathways may result in the restoration of tendon or cartilage, which can with stand loading with work or sports activity, thereby diminishing pain. PRP may also modulate the microvascular environment or alter efferent or afferent neural receptors. The clinical results are encouraging, indicating that PRP injections may have the potential to increase the tendon and cartilage healing capacity in cases with chronic tendinosis and chondropathy of the knee.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biomechanical roles of both tendons and ligaments are fulfilled by extracellular matrix of these tissues. In particular, tension is mainly transmitted and resisted by fibrous proteins (collagen, elastin), whereas compressive load is absorbed by water-soluble glycosaminoglycans (GAGs). GAGs spanning the interfibrillar spaces and interacting with fibrils also seem to play a part in transmitting and resisting tensile stresses. Apart from different functional roles and collagen array, tendons and ligaments share the same basic structure showing periodic undulations of collagen fibers or crimps. Each crimp is composed of many knots of each single fibril or fibrillar crimps. Fibrillar and fiber crimps act as shock absorbers during the initial elongation of both tendons and ligaments and assist the elastic recoil of fibrils and fibers when the tensile stress is removed. The aim of this thesis was to evaluate whether GAGs directly affect the 3D microstructural integrity of fibrillar crimp and fiber crimps in both tendons and ligaments. Achilles tendons and medial collateral ligaments of the knee from eight female Sprague-Dawley rats (90 days old) were digested with chondroitinase ABC to remove GAGs and observed under a scanning electron microscope (SEM). In addition, isolated fibrils from these tissues obtained by mechanical homogenization were analyzed by a transmission electron microscope (TEM). Both samples digested with chondroitinase ABC or mechanically disrupted still showed crimps and fibrillar crimps comparable to tissues with a normal GAGs content. All fibrils in the fibrillar crimp region always twisted leftwards, thus changing their running plane, and then sharply bent, changing their course on a new plane. These data suggest that GAGs do not affect structural integrity or fibrillar crimps functions that seem mainly related to the local fibril leftward twisting and the alternating handedness of collagen from a molecular to a supramolecular level.