8 resultados para ASYMMETRIC ARYLATION

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The topics I came across during the period I spent as a Ph.D. student are mainly two. The first concerns new organocatalytic protocols for Mannich-type reactions mediated by Cinchona alkaloids derivatives (Scheme I, left); the second topic, instead, regards the study of a new approach towards the enantioselective total synthesis of Aspirochlorine, a potent gliotoxin that recent studies indicate as a highly selective and active agent against fungi (Scheme I, right). At the beginning of 2005 I had the chance to join the group of Prof. Alfredo Ricci at the Department of Organic Chemistry of the University of Bologna, starting my PhD studies. During the first period I started to study a new homogeneous organocatalytic aza-Henry reaction by means of Cinchona alkaloid derivatives as chiral base catalysts with good results. Soon after we introduced a new protocol which allowed the in situ synthesis of N-carbamoyl imines, scarcely stable, moisture sensitive compounds. For this purpose we used α-amido sulfones, bench stable white crystalline solids, as imine precursors (Scheme II). In particular we were able to obtain the aza-Henry adducts, by using chiral phase transfer catalysis, with a broad range of substituents as R-group and excellent results, unprecedented for Mannich-type transformations (Scheme II). With the optimised protocol in hand we have extended the methodology to the other Mannich-type reactions. We applied the new method to the Mannich, Strecker and Pudovik (hydrophosphonylation of imines) reactions with very good results in terms of enantioselections and yields, broadening the usefulness of this novel protocol. The Mannich reaction was certainly the most extensively studied work in this thesis (Scheme III). Initially we developed the reaction with α-amido sulfones as imine precursors and non-commercially available malonates with excellent results in terms of yields and enantioselections.3 In this particular case we recorded 1 mol% of catalyst loading, very low for organocatalytic processes. Then we thought to develop a new Mannich reaction by using simpler malonates, such as dimethyl malonate.4 With new optimised condition the reaction provided slightly lower enantioselections than the previous protocol, but the Mannich adducts were very versatile for the obtainment of β3-amino acids. Furthermore we performed the first addition of cyclic β-ketoester to α-amido sulfones obtaining the corresponding products in good yield with high level of diastereomeric and enantiomeric excess (Scheme III). Further studies were done about the Strecker reaction mediated by Cinchona alkaloid phase-transfer quaternary ammonium salt derivatives, using acetone cyanohydrin, a relatively harmless cyanide source (Scheme IV). The reaction proceeded very well providing the corresponding α-amino nitriles in good yields and enantiomeric excesses. Finally, we developed two new complementary methodologies for the hydrophosphonylation of imines (Scheme V). As a result of the low stability of the products derived from aromatic imines, we performed the reactions in mild homogeneous basic condition by using quinine as a chiral base catalyst giving the α-aryl-α-amido phosphonic acid esters as products (Scheme V, top).6 On the other hand, we performed the addition of dialkyl phosphite to aliphatic imines by using chiral Cinchona alkaloid phase transfer quaternary ammonium salt derivatives using our methodology based on α-amido sulfones (Scheme V, bottom). The results were good for both procedures covering a broad range of α-amino phosphonic acid ester. During the second year Ph.D. studies, I spent six months in the group of Prof. Steven V. Ley, at the Department of Chemistry of the University of Cambridge, in United Kingdom. During this fruitful period I have been involved in a project concerning the enantioselective synthesis of Aspirochlorine. We provided a new route for the synthesis of a key intermediate, reducing the number of steps and increasing the overall yield. Then we introduced a new enantioselective spirocyclisation for the synthesis of a chiral building block for the completion of the synthesis (Scheme VI).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

C2-Symmetrical, enantiopure 2,6-di[1-(1-aziridinyl)alkyl]pyridines (DIAZAPs) were prepared by a high-yielding, three-step sequence starting from 2,6-pyridinedicarbaldehyde and (S)-valinol or (S)-phenylglycinol. The new compounds were tested as ligands in palladium-catalyzed allylation of carbanions in different solvents. Almost quantitative yield and up to 99% enantiomeric excess were obtained in the reactions of the enolates derived from malonate, phenyl- and benzylmalonate dimethyl esters with 1,3-diphenyl-2-propenyl ethyl carbonate. Asymmetric synthesis of 2-(2-pyridyl)aziridines from chiral 2-pyridineimines bearing a stereogenic center at the nitrogen atom was development. The envisioned route involves the addition of chloromethyllithium to the imine derived from 2-pyridinealdehyde and (S)-valinol, protected as O-trimethylsilyl ether. The analogous reaction performed on the imine derived from (S)-valine methyl ester gave the product containing the aziridine ring as well as the α-chloro ketone group coming from the attack of chloromethyllithium to the ester function. Other stereogenic alkyl substituents at nitrogen gave less satisfactory results. Moreover, the aziridination protocol did not work on other aromatic imines, e.g. 3-pyridineimine and benzaldimine, which are not capable of bidentate chelation. The N-substituent could not be removed, but aziridine underwent ring-opening by attack of nitrogen, sulfur, and oxygen nucleophiles. Complete or prevalent regioselectivity was obtained using cerium trichloride heptahydrate as a catalyst. In some cases, the N-substituent could be removed by an oxidative protocol. The addition of organometallic (lithium, magnesium, zinc) reagents to 2-pyrroleimines derived from (S)-valinol and (S)-phenylglycinol gave the N-substituted-1-(2-pyrrolyl)alkylamines with high yields and diastereoselectivities. The (S,S)-diastereomers were useful intermediates for the preparation of enantiopure 1-[1-(2-pyrrolyl)alkyl]aziridines by routine cyclization of the β-aminoalcohol moiety and of (S)-N-benzoyl 1-[1-(2-pyrrolyl)alkyl]amines and their N-substituted derivatives by oxidative cleavage of the chiral auxiliary. 1-Allyl-2-pyrroleimines obtained from (S)-phenylglycinol and (S)-valinol underwent highly diastereoselective addition of allylmetal reagents, used in excess amounts, to give the corresponding secondary amines with concomitant allyl to 1-propenyl isomerisation of the 1-pyrrole substituent. Protection of the 2-aminoalcohol moiety as oxazolidinone, amide or Boc derivate followed by ring closing metathesis of the alkene groups gave the unsaturated bicyclic compound, whose hydrogenation afforded the indolizidine derivative as a mixture of separable diastereomers. The absolute configuration of the main diastereomer was assessed by X-ray crystallographic analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The studies conducted during my Phd thesis were focused on two different directions: 1. In one case we tried to face some long standing problems of the asymmetric aminocatalysis as the activation of encumbered carbonyl compounds and the control of the diastereoisomeric ratio in the diastero- and enantioselective construction of all carbon substituted quaternary stereocenters adjacent a tertiary one. In this section (Challenges) was described the asymmetric aziridination of ,-unsaturated ketones, the activation of ,-unsaturated -branched aldehydes and the Michael addition of oxindoles to enals and enones. For the activation via iminium ion formation of sterically demanding substrates, as ,-unsaturated ketones and ,-unsaturated -branched aldehydes, we exploited a chiral primary amine in order to overcome the problem of the iminium ion formation between the catalyst and encumbered carbonylic componds. For the control of diastereoisomeric ratio in the diastero- and enantioselective construction of all carbon substituted quaternary stereocenters adjacent a tertiary one we envisaged that a suitable strategy was the Michael addition to 3 substituted oxindoles to enals activated via LUMO-lowering catalysis. In this synthetic protocol we designed a new bifunctional catalyst with an amine moiety for activate the aldehyde and a tioureidic fragment for direct the approach of the oxindole. This part of the thesis (Challenges) could be considered pure basic research, where the solution of the synthetic problem was the goal itself of the research. 2. In the other hand (Molecules) we applied our knowledge about the carbonylic compounds activation and about cascade reaction to the synthesis of three new classes of spirooxindole in enantiopure form. The construction of libraries of these bioactive compounds represented a scientific bridge between medicinal chemistry or biology and the asymmetric catalysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In first part we have developed a simple regiocontrolled protocol of 1,3-DC to get ring fused pyrazole derivatives. These pyrazole derivatives were synthesized using 1,3-DC between nitrile imine and various dipolarophiles such as alkynes, cyclic α,β-ketones, lactones, thiocatones and lactums. The reactions were found to be highly regiospecific. In second part we have discussed about helicene, its properties, synthesis and applications as asymmetric catalyst.Due to inherent chirality, herein we have made an attempt to synthesize the helicene-thiourea based catalyst for asymmetric catalysis. The synthesis involved formation of two key intermediates viz, bromo-phenanthrene 5 and a vinyl-naphthalene 10. The coupling of these two intermediates leads to formation of hexahelicene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the last fifteen years organocatalysis emerged as a powerful tool for the enantioselective functionalization of the most different organic molecules. Both C-C and C-heteroatom bonds can be formed in an enantioselective fashion using many types of catalyst and the field is always growing. Many kind of chiral catalysts have emerged as privileged, but among them Proline, cinchona alkaloids, BINOL, and their derivatives showed to be particularly useful chiral scaffolds. This thesis, after a short presentation of many organocatalysts and activation modes, focuses mainly on cinchona alkaloid derived primary amines and BINOL derived chiral Brønsted acids, describing their properties and applications. Then, in the experimental part, these compounds are used for the catalysis of new transformations. The enantioselective Friedel-Crafts alkylation of cyclic enones with naphthols using cinchona alkaloid derived primary amines as catalysts is presented and discussed. The results of this work were very good and this resulted also in a publication. The same catalysts are then used to accomplish the enantioselective addition of indoles to cyclic enones. Many catalysts in combination with many acids as co-catalysts were tried and the reaction was fully studied. Selective N-alkylation was obtained in many cases, in combination with quite good to good enantioselectivities. Also other kind of catalysis were tried for this reaction, with interesting results. Another aza-Michael reaction between OH-free hydroxylamines and nitrostyrene using cinchona alkaloid derived thioureas is briefly discussed. Then our attention focused on Brønsted acid catalyzed transformations. With this regard, the Prins cyclization, a reaction never accomplished in an enantioselective fashion until now, is presented and developed. The results obtained are promising. In the last part of this thesis the work carried out abroad is presented. In Prof. Rueping laboratories, an enantioselective Nazarov cyclization using cooperative catalysis and the enantioselective desymmetrization of meso-hydrobenzoin catalyzed by Brønsted acid were studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This doctoral thesis deals with the development of novel organocatalytic strategies for asymmetric transformation. The intrinsic versatility of organocatalysis and the use of different activation modes have been exploited to achieve new catalytic enantioselective processes, towards the synthesis of biologically relevant scaffolds. The most investigated organocatalytic system have been those based on H-bond interaction (such as chiral thioureas or phosphoric acids) as well as the ones based on aminocatalysis. Despite conceptually distinct, the transformations detailed in this Thesis are linked together by simple and recurring modes of activation, induction and reactivity, promoted by the catalysts employed. The chemical diversity of the challenges encountered allows to get a precious overall view on organocatalysis, highlighting that enormous chemical diversity can be created by judicious choice of select catalyst.